These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
286 related items for PubMed ID: 19170239
1. Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by Desulfovibrio desulfuricans. Yuan SJ, Xu FJ, Pehkonen SO, Ting YP, Neoh KG, Kang ET. Biotechnol Bioeng; 2009 Jun 01; 103(2):268-81. PubMed ID: 19170239 [Abstract] [Full Text] [Related]
2. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention. Yuan SJ, Pehkonen SO, Ting YP, Neoh KG, Kang ET. Langmuir; 2010 May 04; 26(9):6728-36. PubMed ID: 20000424 [Abstract] [Full Text] [Related]
3. Surface functionalization of Cu-Ni alloys via grafting of a bactericidal polymer for inhibiting biocorrosion by Desulfovibrio desulfuricans in anaerobic seawater. Yuan SJ, Liu CK, Pehkonen SO, Bai RB, Neoh KG, Ting YP, Kang ET. Biofouling; 2009 May 04; 25(2):109-25. PubMed ID: 19021016 [Abstract] [Full Text] [Related]
4. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion. Yuan SJ, Pehkonen SO, Ting YP, Neoh KG, Kang ET. ACS Appl Mater Interfaces; 2009 Mar 04; 1(3):640-52. PubMed ID: 20355986 [Abstract] [Full Text] [Related]
5. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. Lopes FA, Morin P, Oliveira R, Melo LF. J Appl Microbiol; 2006 Nov 04; 101(5):1087-95. PubMed ID: 17040232 [Abstract] [Full Text] [Related]
6. Biomimetic anchors for antifouling and antibacterial polymer brushes on stainless steel. Yang WJ, Cai T, Neoh KG, Kang ET, Dickinson GH, Teo SL, Rittschof D. Langmuir; 2011 Jun 07; 27(11):7065-76. PubMed ID: 21563843 [Abstract] [Full Text] [Related]
7. Combination of electrografting and atom-transfer radical polymerization for making the stainless steel surface antibacterial and protein antiadhesive. Ignatova M, Voccia S, Gilbert B, Markova N, Cossement D, Gouttebaron R, Jérôme R, Jérôme C. Langmuir; 2006 Jan 03; 22(1):255-62. PubMed ID: 16378429 [Abstract] [Full Text] [Related]
8. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization. Huang J, Murata H, Koepsel RR, Russell AJ, Matyjaszewski K. Biomacromolecules; 2007 May 03; 8(5):1396-9. PubMed ID: 17417906 [Abstract] [Full Text] [Related]
9. Permanent, non-leaching antibacterial surface--2: how high density cationic surfaces kill bacterial cells. Murata H, Koepsel RR, Matyjaszewski K, Russell AJ. Biomaterials; 2007 Nov 03; 28(32):4870-9. PubMed ID: 17706762 [Abstract] [Full Text] [Related]
10. Anticoagulant surface of 316 L stainless steel modified by surface-initiated atom transfer radical polymerization. Guo W, Zhu J, Cheng Z, Zhang Z, Zhu X. ACS Appl Mater Interfaces; 2011 May 03; 3(5):1675-80. PubMed ID: 21528878 [Abstract] [Full Text] [Related]
11. Stainless steel grafting of hyperbranched polymer brushes with an antibacterial activity: synthesis, characterization, and properties. Ignatova M, Voccia S, Gabriel S, Gilbert B, Cossement D, Jerome R, Jerome C. Langmuir; 2009 Jan 20; 25(2):891-902. PubMed ID: 19177648 [Abstract] [Full Text] [Related]
12. Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity. Huang J, Koepsel RR, Murata H, Wu W, Lee SB, Kowalewski T, Russell AJ, Matyjaszewski K. Langmuir; 2008 Jun 01; 24(13):6785-95. PubMed ID: 18517227 [Abstract] [Full Text] [Related]
13. Permanent, nonleaching antibacterial surfaces. 1. Synthesis by atom transfer radical polymerization. Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ. Biomacromolecules; 2004 Jun 01; 5(3):877-82. PubMed ID: 15132676 [Abstract] [Full Text] [Related]
14. Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)-stainless steel hybrids and their antifouling and antibacterial surfaces. Yuan S, Wan D, Liang B, Pehkonen SO, Ting YP, Neoh KG, Kang ET. Langmuir; 2011 Mar 15; 27(6):2761-74. PubMed ID: 21338094 [Abstract] [Full Text] [Related]
15. Biomimetic anchor for surface-initiated polymerization from metal substrates. Fan X, Lin L, Dalsin JL, Messersmith PB. J Am Chem Soc; 2005 Nov 16; 127(45):15843-7. PubMed ID: 16277527 [Abstract] [Full Text] [Related]
16. Polymer grafting via ATRP initiated from macroinitiator synthesized on surface. Liu Y, Klep V, Zdyrko B, Luzinov I. Langmuir; 2004 Aug 03; 20(16):6710-8. PubMed ID: 15274576 [Abstract] [Full Text] [Related]
18. Polymer brush covalently attached to OH-functionalized mica surface via surface-initiated ATRP: control of grafting density and polymer chain length. Lego B, François M, Skene WG, Giasson S. Langmuir; 2009 May 05; 25(9):5313-21. PubMed ID: 19256467 [Abstract] [Full Text] [Related]
19. Functionalization of hydrogen-terminated silicon via surface-initiated atom-transfer radical polymerization and derivatization of the polymer brushes. Xu D, Yu WH, Kang ET, Neoh KG. J Colloid Interface Sci; 2004 Nov 01; 279(1):78-87. PubMed ID: 15380414 [Abstract] [Full Text] [Related]
20. Covalent immobilization of glucose oxidase on well-defined poly(glycidyl methacrylate)-Si(111) hybrids from surface-initiated atom-transfer radical polymerization. Xu FJ, Cai QJ, Li YL, Kang ET, Neoh KG. Biomacromolecules; 2005 Nov 01; 6(2):1012-20. PubMed ID: 15762672 [Abstract] [Full Text] [Related] Page: [Next] [New Search]