These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


234 related items for PubMed ID: 19173310

  • 1. Prediction of 3D metal binding sites from translated gene sequences based on remote-homology templates.
    Levy R, Edelman M, Sobolev V.
    Proteins; 2009 Aug 01; 76(2):365-74. PubMed ID: 19173310
    [Abstract] [Full Text] [Related]

  • 2. Exploiting 3D structural templates for detection of metal-binding sites in protein structures.
    Goyal K, Mande SC.
    Proteins; 2008 Mar 01; 70(4):1206-18. PubMed ID: 17847089
    [Abstract] [Full Text] [Related]

  • 3. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C, Pollastri G.
    Proteins; 2009 Oct 01; 77(1):181-90. PubMed ID: 19422056
    [Abstract] [Full Text] [Related]

  • 4. Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles.
    Kundrotas PJ, Lensink MF, Alexov E.
    Int J Biol Macromol; 2008 Aug 15; 43(2):198-208. PubMed ID: 18572239
    [Abstract] [Full Text] [Related]

  • 5. Flexibility of metal binding sites in proteins on a database scale.
    Babor M, Greenblatt HM, Edelman M, Sobolev V.
    Proteins; 2005 May 01; 59(2):221-30. PubMed ID: 15726624
    [Abstract] [Full Text] [Related]

  • 6. Metalloproteomics: high-throughput structural and functional annotation of proteins in structural genomics.
    Shi W, Zhan C, Ignatov A, Manjasetty BA, Marinkovic N, Sullivan M, Huang R, Chance MR.
    Structure; 2005 Oct 01; 13(10):1473-86. PubMed ID: 16216579
    [Abstract] [Full Text] [Related]

  • 7. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K, Rychlewski L.
    Proteins; 2003 Oct 01; 53 Suppl 6():410-7. PubMed ID: 14579329
    [Abstract] [Full Text] [Related]

  • 8. Protein-binding site prediction based on three-dimensional protein modeling.
    Oh M, Joo K, Lee J.
    Proteins; 2009 Oct 01; 77 Suppl 9():152-6. PubMed ID: 19768678
    [Abstract] [Full Text] [Related]

  • 9. N-terminal N-myristoylation of proteins: prediction of substrate proteins from amino acid sequence.
    Maurer-Stroh S, Eisenhaber B, Eisenhaber F.
    J Mol Biol; 2002 Apr 05; 317(4):541-57. PubMed ID: 11955008
    [Abstract] [Full Text] [Related]

  • 10. Structural analysis of metal sites in proteins: non-heme iron sites as a case study.
    Andreini C, Bertini I, Cavallaro G, Najmanovich RJ, Thornton JM.
    J Mol Biol; 2009 May 01; 388(2):356-80. PubMed ID: 19265704
    [Abstract] [Full Text] [Related]

  • 11. Sequence comparison and protein structure prediction.
    Dunbrack RL.
    Curr Opin Struct Biol; 2006 Jun 01; 16(3):374-84. PubMed ID: 16713709
    [Abstract] [Full Text] [Related]

  • 12. Expanding the nitrogen regulatory protein superfamily: Homology detection at below random sequence identity.
    Kinch LN, Grishin NV.
    Proteins; 2002 Jul 01; 48(1):75-84. PubMed ID: 12012339
    [Abstract] [Full Text] [Related]

  • 13. NdPASA: a novel pairwise protein sequence alignment algorithm that incorporates neighbor-dependent amino acid propensities.
    Wang J, Feng JA.
    Proteins; 2005 Feb 15; 58(3):628-37. PubMed ID: 15616964
    [Abstract] [Full Text] [Related]

  • 14. Efficient recognition of protein fold at low sequence identity by conservative application of Psi-BLAST: application.
    Stevens FJ, Kuemmel C, Babnigg G, Collart FR.
    J Mol Recognit; 2005 Feb 15; 18(2):150-7. PubMed ID: 15593246
    [Abstract] [Full Text] [Related]

  • 15. An introduction to protein contact prediction.
    Hamilton N, Huber T.
    Methods Mol Biol; 2008 Feb 15; 453():87-104. PubMed ID: 18712298
    [Abstract] [Full Text] [Related]

  • 16. Prediction of protein subcellular localization.
    Yu CS, Chen YC, Lu CH, Hwang JK.
    Proteins; 2006 Aug 15; 64(3):643-51. PubMed ID: 16752418
    [Abstract] [Full Text] [Related]

  • 17. Predicting functional sites with an automated algorithm suitable for heterogeneous datasets.
    La D, Livesay DR.
    BMC Bioinformatics; 2005 May 13; 6():116. PubMed ID: 15890082
    [Abstract] [Full Text] [Related]

  • 18. TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites.
    Wallace AC, Borkakoti N, Thornton JM.
    Protein Sci; 1997 Nov 13; 6(11):2308-23. PubMed ID: 9385633
    [Abstract] [Full Text] [Related]

  • 19. Conservation of metal-coordinating residues.
    Kasampalidis IN, Pitas I, Lyroudia K.
    Proteins; 2007 Jul 01; 68(1):123-30. PubMed ID: 17393459
    [Abstract] [Full Text] [Related]

  • 20. Automated structure-based prediction of functional sites in proteins: applications to assessing the validity of inheriting protein function from homology in genome annotation and to protein docking.
    Aloy P, Querol E, Aviles FX, Sternberg MJ.
    J Mol Biol; 2001 Aug 10; 311(2):395-408. PubMed ID: 11478868
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.