These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
94 related items for PubMed ID: 19175408
1. Characterization of Trypanosoma cruzi L-cysteine transport mechanisms and their adaptive regulation. Canepa GE, Bouvier LA, Miranda MR, Uttaro AD, Pereira CA. FEMS Microbiol Lett; 2009 Mar; 292(1):27-32. PubMed ID: 19175408 [Abstract] [Full Text] [Related]
2. Aspartate transport and metabolism in the protozoan parasite Trypanosoma cruzi. Canepa GE, Bouvier LA, Urias U, Miranda MR, Colli W, Alves MJ, Pereira CA. FEMS Microbiol Lett; 2005 Jun 01; 247(1):65-71. PubMed ID: 15927749 [Abstract] [Full Text] [Related]
3. Biochemical characterization of the glutamate transport in Trypanosoma cruzi. Silber AM, Rojas RL, Urias U, Colli W, Alves MJ. Int J Parasitol; 2006 Feb 01; 36(2):157-63. PubMed ID: 16373069 [Abstract] [Full Text] [Related]
4. Biochemical characterization of a low-affinity arginine permease from the parasite Trypanosoma cruzi. Canepa GE, Silber AM, Bouvier LA, Pereira CA. FEMS Microbiol Lett; 2004 Jul 01; 236(1):79-84. PubMed ID: 15212794 [Abstract] [Full Text] [Related]
5. Functional characterization of methionine sulfoxide reductase A from Trypanosoma spp. Arias DG, Cabeza MS, Erben ED, Carranza PG, Lujan HD, Téllez Iñón MT, Iglesias AA, Guerrero SA. Free Radic Biol Med; 2011 Jan 01; 50(1):37-46. PubMed ID: 20969952 [Abstract] [Full Text] [Related]
6. Low de novo glutathione synthesis from circulating sulfur amino acids in the lens epithelium. Mackic JB, Kannan R, Kaplowitz N, Zlokovic BV. Exp Eye Res; 1997 Apr 01; 64(4):615-26. PubMed ID: 9227280 [Abstract] [Full Text] [Related]
8. Characterization of transport systems for cysteine, lysine, alanine, and leucine in wool follicles of sheep. Thomas N, Tivey DR, Penno NM, Nattrass G, Hynd PI. J Anim Sci; 2007 Sep 01; 85(9):2205-13. PubMed ID: 17504964 [Abstract] [Full Text] [Related]
9. Two pathways for cysteine biosynthesis in Leishmania major. Williams RA, Westrop GD, Coombs GH. Biochem J; 2009 May 27; 420(3):451-62. PubMed ID: 19296828 [Abstract] [Full Text] [Related]
12. [Trypanosoma cruzi: transport of essential metabolites acquired from the host]. Pereira CA, Carrillo C, Miranda MR, Bouvier LA, Cánepa GE. Medicina (B Aires); 2008 May 27; 68(5):398-404. PubMed ID: 18977714 [Abstract] [Full Text] [Related]
13. Protein synthesis in purified trypo- and epimastigote forms of Trypanosoma cruzi. Astolfi Filho S, De Sá MF, Gander ES. Acta Trop; 1984 Jun 27; 41(2):109-15. PubMed ID: 6206701 [Abstract] [Full Text] [Related]
14. Proteomic analysis of the Trypanosoma cruzi ribosomal proteins. Ayub MJ, Atwood J, Nuccio A, Tarleton R, Levin MJ. Biochem Biophys Res Commun; 2009 Apr 24; 382(1):30-4. PubMed ID: 19245787 [Abstract] [Full Text] [Related]
15. Trypanosoma cruzi Proline Transport Presents a Cell Density-dependent Regulation. Sayé M, Miranda MR, Reigada C, Pereira CA. J Eukaryot Microbiol; 2016 Jul 24; 63(4):516-23. PubMed ID: 26750517 [Abstract] [Full Text] [Related]
19. Homology, paralogy and function of DGF-1, a highly dispersed Trypanosoma cruzi specific gene family and its implications for information entropy of its encoded proteins. Kawashita SY, da Silva CV, Mortara RA, Burleigh BA, Briones MR. Mol Biochem Parasitol; 2009 May 24; 165(1):19-31. PubMed ID: 19393159 [Abstract] [Full Text] [Related]
20. Complement C2 receptor inhibitor trispanning confers an increased ability to resist complement-mediated lysis in Trypanosoma cruzi. Cestari Idos S, Evans-Osses I, Freitas JC, Inal JM, Ramirez MI. J Infect Dis; 2008 Nov 01; 198(9):1276-83. PubMed ID: 18781865 [Abstract] [Full Text] [Related] Page: [Next] [New Search]