These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 19176889

  • 1. Swelling-activated transport of taurine in cultured gill cells of sea bass: physiological adaptation and pavement cell plasticity.
    Avella M, Ducoudret O, Pisani DF, Poujeol P.
    Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1149-60. PubMed ID: 19176889
    [Abstract] [Full Text] [Related]

  • 2. Potassium channels in primary cultures of seawater fish gill cells. II. Channel activation by hypotonic shock.
    Duranton C, Mikulovic E, Tauc M, Avella M, Poujeol P.
    Am J Physiol Regul Integr Comp Physiol; 2000 Nov; 279(5):R1659-70. PubMed ID: 11049848
    [Abstract] [Full Text] [Related]

  • 3. Fish gill respiratory cells in culture: a new model for Cl(-)-secreting epithelia.
    Avella M, Ehrenfeld J.
    J Membr Biol; 1997 Mar 01; 156(1):87-97. PubMed ID: 9070467
    [Abstract] [Full Text] [Related]

  • 4. Swelling-activated taurine and K+ transport in human cervical cancer cells: association with cell cycle progression.
    Shen MR, Chou CY, Ellory JC.
    Pflugers Arch; 2001 Mar 01; 441(6):787-95. PubMed ID: 11316262
    [Abstract] [Full Text] [Related]

  • 5. Effect of hypotonic shock on cultured pavement cells from freshwater or seawater rainbow trout gills.
    Leguen I, Prunet P.
    Comp Biochem Physiol A Mol Integr Physiol; 2004 Feb 01; 137(2):259-69. PubMed ID: 15123200
    [Abstract] [Full Text] [Related]

  • 6. Characterisation of three pathways for osmolyte efflux in human erythroleukemia cells.
    Huang CC, Hall AC, Lim PH.
    Life Sci; 2007 Aug 09; 81(9):732-9. PubMed ID: 17698149
    [Abstract] [Full Text] [Related]

  • 7. Osmotic swelling-provoked release of organic osmolytes in human intestinal epithelial cells.
    Tomassen SF, Fekkes D, de Jonge HR, Tilly BC.
    Am J Physiol Cell Physiol; 2004 Jun 09; 286(6):C1417-22. PubMed ID: 14960416
    [Abstract] [Full Text] [Related]

  • 8. Volume-sensitive release of organic osmolytes in the human lung epithelial cell line A549: role of the 5-lipoxygenase.
    Holm JB, Grygorczyk R, Lambert IH.
    Am J Physiol Cell Physiol; 2013 Jul 01; 305(1):C48-60. PubMed ID: 23485709
    [Abstract] [Full Text] [Related]

  • 9. Swelling-activated amino acid efflux in the human neuroblastoma cell line CHP-100.
    Basavappa S, Huang CC, Mangel AW, Lebedev DV, Knauf PA, Ellory JC.
    J Neurophysiol; 1996 Aug 01; 76(2):764-9. PubMed ID: 8871197
    [Abstract] [Full Text] [Related]

  • 10. Swelling-activated efflux of taurine and other organic osmolytes in endothelial cells.
    Manolopoulos VG, Voets T, Declercq PE, Droogmans G, Nilius B.
    Am J Physiol; 1997 Jul 01; 273(1 Pt 1):C214-22. PubMed ID: 9252459
    [Abstract] [Full Text] [Related]

  • 11. Anion-selectivity of the swelling-activated osmolyte channel in eel erythrocytes.
    Lewis RA, Bursell JD, Kirk K.
    J Membr Biol; 1996 Jan 01; 149(2):103-11. PubMed ID: 8834117
    [Abstract] [Full Text] [Related]

  • 12. Modulation by extracellular Cl- of volume-activated organic osmolyte and halide permeabilities in HeLa cells.
    Stutzin A, Eguiguren AL, Cid LP, Sepúlveda FV.
    Am J Physiol; 1997 Sep 01; 273(3 Pt 1):C999-1007. PubMed ID: 9316421
    [Abstract] [Full Text] [Related]

  • 13. Stimulation by caveolin-1 of the hypotonicity-induced release of taurine and ATP at basolateral, but not apical, membrane of Caco-2 cells.
    Ullrich N, Caplanusi A, Brône B, Hermans D, Larivière E, Nilius B, Van Driessche W, Eggermont J.
    Am J Physiol Cell Physiol; 2006 May 01; 290(5):C1287-96. PubMed ID: 16338968
    [Abstract] [Full Text] [Related]

  • 14. Volume-activated taurine transport is differentially activated in human cervical cancer HT-3 cells but not in human papillomavirus-immortalized Z183A and normal cervical epithelial cells.
    Chou CY, Shen MR, Chen TM, Huang KE.
    Clin Exp Pharmacol Physiol; 1997 Dec 01; 24(12):935-9. PubMed ID: 9406659
    [Abstract] [Full Text] [Related]

  • 15. Characterization of the taurine transport pathway in A6 kidney cells.
    Schmieder S, Soriani O, Brochiero E, Raschi C, Bogliolo S, Lindenthal S, Ehrenfeld J.
    J Membr Biol; 2002 Nov 15; 190(2):145-58. PubMed ID: 12474079
    [Abstract] [Full Text] [Related]

  • 16. The Na+/K+/2Cl- cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation.
    Lorin-Nebel C, Boulo V, Bodinier C, Charmantier G.
    J Exp Biol; 2006 Dec 15; 209(Pt 24):4908-22. PubMed ID: 17142680
    [Abstract] [Full Text] [Related]

  • 17. Integumental taurine transport in Mytilus gill: short-term adaptation to reduced salinity.
    Silva AL, Wright SH.
    J Exp Biol; 1992 Jan 15; 162():265-79. PubMed ID: 1552279
    [Abstract] [Full Text] [Related]

  • 18. Hypotonicity-activated efflux of taurine and myo-inositol in rat inner medullary collecting duct cells: evidence for a major common pathway.
    Ruhfus B, Kinne RK.
    Kidney Blood Press Res; 1996 Jan 15; 19(6):317-24. PubMed ID: 8990043
    [Abstract] [Full Text] [Related]

  • 19. Volume changes and whole cell membrane currents activated during gradual osmolarity decrease in C6 glioma cells: contribution of two types of K+ channels.
    Ordaz B, Vaca L, Franco R, Pasantes-Morales H.
    Am J Physiol Cell Physiol; 2004 Jun 15; 286(6):C1399-409. PubMed ID: 14736709
    [Abstract] [Full Text] [Related]

  • 20. Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes.
    Parkerson KA, Sontheimer H.
    Glia; 2004 May 15; 46(4):419-36. PubMed ID: 15095372
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.