These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 1917986
21. Thapsigargin-induced increase in cytoplasmic Ca2+ concentration and aldosterone production in rat adrenal glomerulosa cells: interaction with potassium and angiotensin-II. Hajnóczky G, Várnai P, Holló Z, Christensen SB, Balla T, Enyedi P, Spät A. Endocrinology; 1991 May; 128(5):2639-44. PubMed ID: 2019269 [Abstract] [Full Text] [Related]
22. Vectorial Ca2+ flux from the extracellular space to the endoplasmic reticulum via a restricted cytoplasmic compartment regulates inositol 1,4,5-trisphosphate-stimulated Ca2+ release from internal stores in vascular endothelial cells. Cabello OA, Schilling WP. Biochem J; 1993 Oct 15; 295 ( Pt 2)(Pt 2):357-66. PubMed ID: 8240234 [Abstract] [Full Text] [Related]
23. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells. Poulsen JC, Caspersen C, Mathiasen D, East JM, Tunwell RE, Lai FA, Maeda N, Mikoshiba K, Treiman M. Biochem J; 1995 May 01; 307 ( Pt 3)(Pt 3):749-58. PubMed ID: 7741706 [Abstract] [Full Text] [Related]
24. Divergent differentiation of rat adrenocortical cells is associated with an interruption of angiotensin II-mediated signal transduction. Roskelley CD, Baimbridge KG, Leung PC, Auersperg N. Mol Cell Endocrinol; 1992 Nov 01; 89(1-2):79-89. PubMed ID: 1301386 [Abstract] [Full Text] [Related]
25. Intracellular Ca2+ pools in Jurkat T-lymphocytes. Guse AH, Roth E, Emmrich F. Biochem J; 1993 Apr 15; 291 ( Pt 2)(Pt 2):447-51. PubMed ID: 8484725 [Abstract] [Full Text] [Related]
26. Mobilization of Ca2+ by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone in permeabilized insulin-secreting RINm5F cells: evidence for separate uptake and release compartments in inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. Islam MS, Berggren PO. Biochem J; 1993 Jul 15; 293 ( Pt 2)(Pt 2):423-9. PubMed ID: 8343123 [Abstract] [Full Text] [Related]
27. Enhancement of the inositol 1,4,5-trisphosphate-releasable Ca2+ pool by GTP in permeabilized hepatocytes. Thomas AP. J Biol Chem; 1988 Feb 25; 263(6):2704-11. PubMed ID: 3277959 [Abstract] [Full Text] [Related]
28. Antigen and thapsigargin promote influx of Ca2+ in rat basophilic RBL-2H3 cells by ostensibly similar mechanisms that allow filling of inositol 1,4,5-trisphosphate-sensitive and mitochondrial Ca2+ stores. Ali H, Maeyama K, Sagi-Eisenberg R, Beaven MA. Biochem J; 1994 Dec 01; 304 ( Pt 2)(Pt 2):431-40. PubMed ID: 7998977 [Abstract] [Full Text] [Related]
29. Inositol 1,3,4,5-tetrakisphosphate stimulates calcium release from bovine adrenal microsomes by a mechanism independent of the inositol 1,4,5-trisphosphate receptor. Ely JA, Hunyady L, Baukal AJ, Catt KJ. Biochem J; 1990 Jun 01; 268(2):333-8. PubMed ID: 2163607 [Abstract] [Full Text] [Related]
30. Control of glomerulosa cell function by angiotensin II: transduction by G-proteins and inositol polyphosphates. Catt KJ, Balla T, Baukal AJ, Hausdorff WP, Aguilera G. Clin Exp Pharmacol Physiol; 1988 Jul 01; 15(7):501-15. PubMed ID: 3152162 [Abstract] [Full Text] [Related]
31. Modulation of agonist-induced inositol phosphate metabolism by cyclic adenosine 3',5'-monophosphate in adrenal glomerulosa cells. Baukal AJ, Hunyady L, Balla T, Ely JA, Catt KJ. Mol Endocrinol; 1990 Nov 01; 4(11):1712-9. PubMed ID: 2280773 [Abstract] [Full Text] [Related]
32. Store-operated Ca2+ entry and coupling to Ca2+ pool depletion in thapsigargin-resistant cells. Waldron RT, Short AD, Gill DL. J Biol Chem; 1997 Mar 07; 272(10):6440-7. PubMed ID: 9045668 [Abstract] [Full Text] [Related]
33. Role of the capacitative calcium influx in the activation of steroidogenesis by angiotensin-II in adrenal glomerulosa cells. Burnay MM, Python CP, Vallotton MB, Capponi AM, Rossier MF. Endocrinology; 1994 Aug 07; 135(2):751-8. PubMed ID: 8033823 [Abstract] [Full Text] [Related]
34. External calcium is required for activation of phospholipase C by angiotensin II in adrenal glomerulosa cells. Foster RH, Davis JS, Farese RV. Mol Cell Biochem; 1990 Jun 25; 95(2):157-66. PubMed ID: 2366756 [Abstract] [Full Text] [Related]
35. Dissociation of Ca2+ entry and Ca2+ mobilization responses to angiotensin II in bovine adrenal chromaffin cells. Stauderman KA, Pruss RM. J Biol Chem; 1989 Nov 05; 264(31):18349-55. PubMed ID: 2509455 [Abstract] [Full Text] [Related]
38. Intracellular Ca2+ signals induced by ATP and thapsigargin in glioma C6 cells. Calcium pools sensitive to inositol 1,4,5-trisphosphate and thapsigargin. Sabała P, Amler E, Barańska J. Neurochem Int; 1997 Jul 01; 31(1):55-64. PubMed ID: 9185165 [Abstract] [Full Text] [Related]
39. Mechanism of agonist-induced [Ca2+]i oscillations in pituitary gonadotrophs. Stojilković SS, Kukuljan M, Tomić M, Rojas E, Catt KJ. J Biol Chem; 1993 Apr 15; 268(11):7713-20. PubMed ID: 8463300 [Abstract] [Full Text] [Related]
40. Effects of ACTH and angiotensin II on cytosolic calcium in cultured adrenal glomerulosa cells. Role of cAMP production in the ACTH effect. Tremblay E, Payet MD, Gallo-Payet N. Cell Calcium; 1991 Nov 15; 12(10):655-73. PubMed ID: 1722736 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]