These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


536 related items for PubMed ID: 19181854

  • 1. Detergent binding explains anomalous SDS-PAGE migration of membrane proteins.
    Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM.
    Proc Natl Acad Sci U S A; 2009 Feb 10; 106(6):1760-5. PubMed ID: 19181854
    [Abstract] [Full Text] [Related]

  • 2. Structural basis for misfolding at a disease phenotypic position in CFTR: comparison of TM3/4 helix-loop-helix constructs with TM4 peptides.
    Mulvihill CM, Deber CM.
    Biochim Biophys Acta; 2012 Jan 10; 1818(1):49-54. PubMed ID: 21996038
    [Abstract] [Full Text] [Related]

  • 3. Role of the extracellular loop in the folding of a CFTR transmembrane helical hairpin.
    Wehbi H, Rath A, Glibowicka M, Deber CM.
    Biochemistry; 2007 Jun 19; 46(24):7099-106. PubMed ID: 17516627
    [Abstract] [Full Text] [Related]

  • 4. Positional dependence of non-native polar mutations on folding of CFTR helical hairpins.
    Wehbi H, Gasmi-Seabrook G, Choi MY, Deber CM.
    Biochim Biophys Acta; 2008 Jan 19; 1778(1):79-87. PubMed ID: 17949679
    [Abstract] [Full Text] [Related]

  • 5. Non-native interhelical hydrogen bonds in the cystic fibrosis transmembrane conductance regulator domain modulated by polar mutations.
    Choi MY, Cardarelli L, Therien AG, Deber CM.
    Biochemistry; 2004 Jun 29; 43(25):8077-83. PubMed ID: 15209503
    [Abstract] [Full Text] [Related]

  • 6. Structural effects of extracellular loop mutations in CFTR helical hairpins.
    Chang YH, Stone TA, Chin S, Glibowicka M, Bear CE, Deber CM.
    Biochim Biophys Acta Biomembr; 2018 May 29; 1860(5):1092-1098. PubMed ID: 29307731
    [Abstract] [Full Text] [Related]

  • 7. Sequence hydropathy dominates membrane protein response to detergent solubilization.
    Nadeau VG, Rath A, Deber CM.
    Biochemistry; 2012 Aug 07; 51(31):6228-37. PubMed ID: 22779403
    [Abstract] [Full Text] [Related]

  • 8. Polar residues in membrane domains of proteins: molecular basis for helix-helix association in a mutant CFTR transmembrane segment.
    Partridge AW, Melnyk RA, Deber CM.
    Biochemistry; 2002 Mar 19; 41(11):3647-53. PubMed ID: 11888281
    [Abstract] [Full Text] [Related]

  • 9. Interhelical packing in detergent micelles. Folding of a cystic fibrosis transmembrane conductance regulator construct.
    Therien AG, Deber CM.
    J Biol Chem; 2002 Feb 22; 277(8):6067-72. PubMed ID: 11748233
    [Abstract] [Full Text] [Related]

  • 10. Expression and purification of two hydrophobic double-spanning membrane proteins derived from the cystic fibrosis transmembrane conductance regulator.
    Therien AG, Glibowicka M, Deber CM.
    Protein Expr Purif; 2002 Jun 22; 25(1):81-6. PubMed ID: 12071702
    [Abstract] [Full Text] [Related]

  • 11. Design, expression, and purification of de novo transmembrane "hairpin" peptides.
    Tulumello DV, Johnson RM, Isupov I, Deber CM.
    Biopolymers; 2012 Jun 22; 98(6):546-56. PubMed ID: 23203760
    [Abstract] [Full Text] [Related]

  • 12. Loop sequence dictates the secondary structure of a human membrane protein hairpin.
    Nadeau VG, Deber CM.
    Biochemistry; 2013 Apr 09; 52(14):2419-26. PubMed ID: 23488803
    [Abstract] [Full Text] [Related]

  • 13. Mixed anionic detergent/aliphatic alcohol-polyacrylamide gel electrophoresis alters the separation of proteins relative to conventional sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
    Brown EG.
    Anal Biochem; 1988 Oct 09; 174(1):337-48. PubMed ID: 3218745
    [Abstract] [Full Text] [Related]

  • 14. Lysophosphatidylglycerol: a novel effective detergent for solubilizing and purifying the cystic fibrosis transmembrane conductance regulator.
    Huang P, Liu Q, Scarborough GA.
    Anal Biochem; 1998 May 15; 259(1):89-97. PubMed ID: 9606148
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts.
    Rath A, Cunningham F, Deber CM.
    Proc Natl Acad Sci U S A; 2013 Sep 24; 110(39):15668-73. PubMed ID: 24019476
    [Abstract] [Full Text] [Related]

  • 18. CFTR transmembrane segments are impaired in their conformational adaptability by a pathogenic loop mutation and dynamically stabilized by Lumacaftor.
    Krainer G, Schenkel M, Hartmann A, Ravamehr-Lake D, Deber CM, Schlierf M.
    J Biol Chem; 2020 Feb 14; 295(7):1985-1991. PubMed ID: 31882543
    [Abstract] [Full Text] [Related]

  • 19. Correction factors for membrane protein molecular weight readouts on sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
    Rath A, Deber CM.
    Anal Biochem; 2013 Mar 01; 434(1):67-72. PubMed ID: 23201391
    [Abstract] [Full Text] [Related]

  • 20. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region.
    Lu NT, Pedersen PL.
    Arch Biochem Biophys; 2000 Mar 01; 375(1):7-20. PubMed ID: 10683244
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 27.