These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


149 related items for PubMed ID: 19182872

  • 21. [Analysis of flow in artificial stenosis models of mid-sized arteries using 3D PC-MRI].
    Scheuer S, Zöllner FG, Tumat E, Schad LR.
    Z Med Phys; 2010; 20(1):34-45. PubMed ID: 20304718
    [Abstract] [Full Text] [Related]

  • 22. The accuracy of magnetic resonance phase velocity measurements in stenotic flow.
    Siegel JM, Oshinski JN, Pettigrew RI, Ku DN.
    J Biomech; 1996 Dec; 29(12):1665-72. PubMed ID: 8945670
    [Abstract] [Full Text] [Related]

  • 23. Acquisition of 3-D arterial geometries and integration with computational fluid dynamics.
    Hammer S, Jeays A, Allan PL, Hose R, Barber D, Easson WJ, Hoskins PR.
    Ultrasound Med Biol; 2009 Dec; 35(12):2069-83. PubMed ID: 19828230
    [Abstract] [Full Text] [Related]

  • 24. Computational investigation of subject-specific cerebrospinal fluid flow in the third ventricle and aqueduct of Sylvius.
    Kurtcuoglu V, Soellinger M, Summers P, Boomsma K, Poulikakos D, Boesiger P, Ventikos Y.
    J Biomech; 2007 Dec; 40(6):1235-45. PubMed ID: 16904117
    [Abstract] [Full Text] [Related]

  • 25. Numerical simulation of in vitro pulsatile flow and its study using FRISK, a rapid phase contrast technique.
    Li L, Doyle M, Rayarao G, Kortright E, Ito Y, Anayiotos A.
    J Magn Reson Imaging; 2007 Sep; 26(3):805-15. PubMed ID: 17729352
    [Abstract] [Full Text] [Related]

  • 26. Quantitative phase-contrast flow MRI measurements in the presence of a second vessel closely positioned to the examined vessel.
    Lagerstrand KM, Vikhoff-Baaz B, Starck G, Forssell-Aronsson E.
    J Magn Reson Imaging; 2006 Feb; 23(2):156-62. PubMed ID: 16416442
    [Abstract] [Full Text] [Related]

  • 27. Influence of a downstream narrowing on the flow profile in a tube.
    Lubbers J, de Vries MP, Veldman AE, Verkerke GJ.
    J Biomech; 2006 Feb; 39(1):70-7. PubMed ID: 16271589
    [Abstract] [Full Text] [Related]

  • 28. A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending.
    Grigioni M, Daniele C, Morbiducci U, Del Gaudio C, D'Avenio G, Balducci A, Barbaro V.
    J Biomech; 2005 Jul; 38(7):1375-86. PubMed ID: 15922748
    [Abstract] [Full Text] [Related]

  • 29. Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics.
    Xue YJ, Gao PY, Duan Q, Lin Y, Dai CB.
    Acta Radiol; 2008 Jun; 49(5):558-65. PubMed ID: 18568543
    [Abstract] [Full Text] [Related]

  • 30. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models.
    Ford MD, Nikolov HN, Milner JS, Lownie SP, Demont EM, Kalata W, Loth F, Holdsworth DW, Steinman DA.
    J Biomech Eng; 2008 Apr; 130(2):021015. PubMed ID: 18412502
    [Abstract] [Full Text] [Related]

  • 31. Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD.
    Feng R, Xenos M, Girdhar G, Kang W, Davenport JW, Deng Y, Bluestein D.
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):119-29. PubMed ID: 21369918
    [Abstract] [Full Text] [Related]

  • 32. Feasibility of patient specific aortic blood flow CFD simulation.
    Svensson J, Gårdhagen R, Heiberg E, Ebbers T, Loyd D, Länne T, Karlsson M.
    Med Image Comput Comput Assist Interv; 2006 Jan; 9(Pt 1):257-63. PubMed ID: 17354898
    [Abstract] [Full Text] [Related]

  • 33. A study on hemodynamic characteristics at the stenosed blood vessel using computational fluid dynamics simulations.
    Park YR, Kim SJ, Kim SJ, Kim JS, Kang HS, Kim GB.
    J Biomed Nanotechnol; 2013 Jul; 9(7):1137-45. PubMed ID: 23909127
    [Abstract] [Full Text] [Related]

  • 34. Measuring flow reattachment lengths downstream of a stenosis using MRI.
    Gach HM, Lowe IJ.
    J Magn Reson Imaging; 2000 Dec; 12(6):939-48. PubMed ID: 11105033
    [Abstract] [Full Text] [Related]

  • 35. Flow-induced disturbances in balanced steady-state free precession images: means to reduce or exploit them.
    Lagerstrand KM, Plewes DB, Vikhoff-Baaz B, Forssell-Aronsson E.
    Magn Reson Med; 2009 Apr; 61(4):893-8. PubMed ID: 19191282
    [Abstract] [Full Text] [Related]

  • 36. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI.
    Rispoli VC, Nielsen JF, Nayak KS, Carvalho JL.
    Biomed Eng Online; 2015 Nov 26; 14():110. PubMed ID: 26611470
    [Abstract] [Full Text] [Related]

  • 37. Overcoming spatio-temporal limitations using dynamically scaled in vitro PC-MRI - A flow field comparison to true-scale computer simulations of idealized, stented and patient-specific left main bifurcations.
    Beier S, Ormiston J, Webster M, Cater J, Norris S, Medrano-Gracia P, Young A, Gilbert K, Cowan B.
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug 26; 2016():1220-1223. PubMed ID: 28324943
    [Abstract] [Full Text] [Related]

  • 38. Hemodynamic comparison of differing anastomotic geometries using magnetic resonance velocimetry.
    Neville RF, Elkins CJ, Alley MT, Wicker RB.
    J Surg Res; 2011 Aug 26; 169(2):311-8. PubMed ID: 20444476
    [Abstract] [Full Text] [Related]

  • 39. A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
    Blake JR, Easson WJ, Hoskins PR.
    Ultrasound Med Biol; 2009 Sep 26; 35(9):1510-24. PubMed ID: 19540655
    [Abstract] [Full Text] [Related]

  • 40. Comparing velocity and fluid shear stress in a stenotic phantom with steady flow: phase-contrast MRI, particle image velocimetry and computational fluid dynamics.
    Khodarahmi I.
    MAGMA; 2015 Aug 26; 28(4):385-93. PubMed ID: 25502616
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.