These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Nitroxyl radical-containing nanoparticles for novel nanomedicine against oxidative stress injury. Yoshitomi T, Nagasaki Y. Nanomedicine (Lond); 2011 Apr; 6(3):509-18. PubMed ID: 21542688 [Abstract] [Full Text] [Related]
6. Core-shell structure of degradable, thermosensitive polymeric micelles studied by small-angle neutron scattering. Ramzi A, Rijcken CJ, Veldhuis TF, Schwahn D, Hennink WE, van Nostrum CF. J Phys Chem B; 2008 Jan 24; 112(3):784-92. PubMed ID: 18166030 [Abstract] [Full Text] [Related]
7. Environment-responsive block copolymer micelles with a disulfide cross-linked core for enhanced siRNA delivery. Matsumoto S, Christie RJ, Nishiyama N, Miyata K, Ishii A, Oba M, Koyama H, Yamasaki Y, Kataoka K. Biomacromolecules; 2009 Jan 12; 10(1):119-27. PubMed ID: 19061333 [Abstract] [Full Text] [Related]
9. Synthesis, characterization, and in vitro 5-Fu release behavior of poly(2,2-dimethyltrimethylene carbonate)-poly(ethylene glycol)-poly(2,2-dimethyltrimethylene carbonate) nanoparticles. Zhang Y, Zhuo RX. J Biomed Mater Res A; 2006 Mar 15; 76(4):674-80. PubMed ID: 16302226 [Abstract] [Full Text] [Related]
13. Preparation of a PLA-PEG block copolymer using a PLA derivative with a formyl terminal group and its application to nanoparticulate formulation. Sasatsu M, Onishi H, Machida Y. Int J Pharm; 2005 Apr 27; 294(1-2):233-45. PubMed ID: 15814247 [Abstract] [Full Text] [Related]
14. pH-induced micelle formation of poly(histidine-co-phenylalanine)-block-poly(ethylene glycol) in aqueous media. Kim GM, Bae YH, Jo WH. Macromol Biosci; 2005 Nov 04; 5(11):1118-24. PubMed ID: 16245269 [Abstract] [Full Text] [Related]
15. Shell-cross-linked amino acid-modified APLA-b-PEG-Cys copolymer micelle as a drug delivery carrier. Xu B, Yuan J, Wang Z, Gao Q. J Microencapsul; 2009 Nov 04; 26(7):659-66. PubMed ID: 19839802 [Abstract] [Full Text] [Related]
16. Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells. Hu Y, Xie J, Tong YW, Wang CH. J Control Release; 2007 Mar 12; 118(1):7-17. PubMed ID: 17241684 [Abstract] [Full Text] [Related]
17. In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Liu J, Zeng F, Allen C. Eur J Pharm Biopharm; 2007 Mar 12; 65(3):309-19. PubMed ID: 17257817 [Abstract] [Full Text] [Related]
18. Iron hydroxide nanoparticles coated with poly(ethylene glycol)-poly(aspartic acid) block copolymer as novel magnetic resonance contrast agents for in vivo cancer imaging. Kumagai M, Imai Y, Nakamura T, Yamasaki Y, Sekino M, Ueno S, Hanaoka K, Kikuchi K, Nagano T, Kaneko E, Shimokado K, Kataoka K. Colloids Surf B Biointerfaces; 2007 Apr 15; 56(1-2):174-81. PubMed ID: 17324561 [Abstract] [Full Text] [Related]
19. Methotrexate-incorporated polymeric nanoparticles of methoxy poly(ethylene glycol)-grafted chitosan. Seo DH, Jeong YI, Kim DG, Jang MJ, Jang MK, Nah JW. Colloids Surf B Biointerfaces; 2009 Mar 01; 69(2):157-63. PubMed ID: 19135342 [Abstract] [Full Text] [Related]
20. Preparation and characterization of self-assembled nanoparticles formed by poly(ethylene oxide)-block-poly(epsilon-caprolactone) copolymers with long poly(epsilon-caprolactone) blocks in aqueous solutions. Sachl R, Uchman M, Matĕjícek P, Procházka K, Stĕpánek M, Spírková M. Langmuir; 2007 Mar 13; 23(6):3395-400. PubMed ID: 17269809 [Abstract] [Full Text] [Related] Page: [Next] [New Search]