These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 19193644
1. Portrait of an enzyme, a complete structural analysis of a multimodular {beta}-N-acetylglucosaminidase from Clostridium perfringens. Ficko-Blean E, Gregg KJ, Adams JJ, Hehemann JH, Czjzek M, Smith SP, Boraston AB. J Biol Chem; 2009 Apr 10; 284(15):9876-84. PubMed ID: 19193644 [Abstract] [Full Text] [Related]
2. Carbohydrate recognition by an architecturally complex α-N-acetylglucosaminidase from Clostridium perfringens. Ficko-Blean E, Stuart CP, Suits MD, Cid M, Tessier M, Woods RJ, Boraston AB. PLoS One; 2012 Apr 10; 7(3):e33524. PubMed ID: 22479408 [Abstract] [Full Text] [Related]
3. Probing the Complex Architecture of Multimodular Carbohydrate-Active Enzymes Using a Combination of Small Angle X-Ray Scattering and X-Ray Crystallography. Czjzek M, Ficko-Blean E. Methods Mol Biol; 2017 Apr 10; 1588():239-253. PubMed ID: 28417374 [Abstract] [Full Text] [Related]
4. Structural analysis of a bacterial exo-α-D-N-acetylglucosaminidase in complex with an unusual disaccharide found in class III mucin. Ficko-Blean E, Boraston AB. Glycobiology; 2012 May 10; 22(5):590-5. PubMed ID: 22090394 [Abstract] [Full Text] [Related]
5. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase. Chitayat S, Gregg K, Adams JJ, Ficko-Blean E, Bayer EA, Boraston AB, Smith SP. J Mol Biol; 2008 Jan 04; 375(1):20-8. PubMed ID: 17999932 [Abstract] [Full Text] [Related]
6. Structural insight into the mechanism of streptozotocin inhibition of O-GlcNAcase. He Y, Martinez-Fleites C, Bubb A, Gloster TM, Davies GJ. Carbohydr Res; 2009 Mar 31; 344(5):627-31. PubMed ID: 19217614 [Abstract] [Full Text] [Related]
7. Structural and functional analysis of four family 84 glycoside hydrolases from the opportunistic pathogen Clostridium perfringens. Pluvinage B, Massel PM, Burak K, Boraston AB. Glycobiology; 2019 Dec 12; 30(1):49-57. PubMed ID: 31701135 [Abstract] [Full Text] [Related]
8. The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-beta-hexosaminidase with its carbohydrate receptor. Ficko-Blean E, Boraston AB. J Biol Chem; 2006 Dec 08; 281(49):37748-57. PubMed ID: 16990278 [Abstract] [Full Text] [Related]
9. Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens. Boraston AB, Ficko-Blean E, Healey M. Biochemistry; 2007 Oct 09; 46(40):11352-60. PubMed ID: 17850114 [Abstract] [Full Text] [Related]
10. The solution structure of the C-terminal modular pair from Clostridium perfringens mu-toxin reveals a noncellulosomal dockerin module. Chitayat S, Adams JJ, Furness HS, Bayer EA, Smith SP. J Mol Biol; 2008 Sep 19; 381(5):1202-12. PubMed ID: 18602403 [Abstract] [Full Text] [Related]
11. Cloning, recombinant production, crystallization and preliminary X-ray diffraction studies of a family 84 glycoside hydrolase from Clostridium perfringens. Ficko-Blean E, Boraston AB. Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Sep 01; 61(Pt 9):834-6. PubMed ID: 16511172 [Abstract] [Full Text] [Related]
12. Structural analysis of CPF_2247, a novel α-amylase from Clostridium perfringens. Ficko-Blean E, Stuart CP, Boraston AB. Proteins; 2011 Oct 01; 79(10):2771-7. PubMed ID: 21905105 [Abstract] [Full Text] [Related]
13. Glycoside hydrolase family 89 alpha-N-acetylglucosaminidase from Clostridium perfringens specifically acts on GlcNAc alpha1,4Gal beta1R at the non-reducing terminus of O-glycans in gastric mucin. Fujita M, Tsuchida A, Hirata A, Kobayashi N, Goto K, Osumi K, Hirose Y, Nakayama J, Yamanoi T, Ashida H, Mizuno M. J Biol Chem; 2011 Feb 25; 286(8):6479-89. PubMed ID: 21177247 [Abstract] [Full Text] [Related]
14. N-acetylglucosamine recognition by a family 32 carbohydrate-binding module from Clostridium perfringens NagH. Ficko-Blean E, Boraston AB. J Mol Biol; 2009 Jul 10; 390(2):208-20. PubMed ID: 19422833 [Abstract] [Full Text] [Related]
15. Structural and mechanistic insight into the basis of mucopolysaccharidosis IIIB. Ficko-Blean E, Stubbs KA, Nemirovsky O, Vocadlo DJ, Boraston AB. Proc Natl Acad Sci U S A; 2008 May 06; 105(18):6560-5. PubMed ID: 18443291 [Abstract] [Full Text] [Related]
16. X-ray structures of Clostridium perfringens sortase C with C-terminal cell wall sorting motif of LPST demonstrate role of subsite for substrate-binding and structural variations of catalytic site. Tamai E, Sekiya H, Nariya H, Katayama S, Kamitori S. Biochem Biophys Res Commun; 2021 May 21; 554():138-144. PubMed ID: 33794418 [Abstract] [Full Text] [Related]
17. The first strain of Clostridium perfringens isolated from an avian source has an alpha-toxin with divergent structural and kinetic properties. Justin N, Walker N, Bullifent HL, Songer G, Bueschel DM, Jost H, Naylor C, Miller J, Moss DS, Titball RW, Basak AK. Biochemistry; 2002 May 21; 41(20):6253-62. PubMed ID: 12009886 [Abstract] [Full Text] [Related]
18. Structural characterization of the α-N-acetylglucosaminidase, a key enzyme in the pathogenesis of Sanfilippo syndrome B. Birrane G, Dassier AL, Romashko A, Lundberg D, Holmes K, Cottle T, Norton AW, Zhang B, Concino MF, Meiyappan M. J Struct Biol; 2019 Mar 01; 205(3):65-71. PubMed ID: 30802506 [Abstract] [Full Text] [Related]
19. Characterization of the autolytic enzymes of Clostridium perfringens. Williamson R, Ward JB. J Gen Microbiol; 1979 Oct 01; 114(2):349-54. PubMed ID: 44314 [Abstract] [Full Text] [Related]