These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 19196120
1. Manufacture of PLGA multiple-channel conduits with precise hierarchical pore architectures and in vitro/vivo evaluation for spinal cord injury. He L, Zhang Y, Zeng C, Ngiam M, Liao S, Quan D, Zeng Y, Lu J, Ramakrishna S. Tissue Eng Part C Methods; 2009 Jun; 15(2):243-55. PubMed ID: 19196120 [Abstract] [Full Text] [Related]
2. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX, Ren J, Chen C, Ren TB, Zhou XY. J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [Abstract] [Full Text] [Related]
9. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Zhu XH, Lee LY, Jackson JS, Tong YW, Wang CH. Biotechnol Bioeng; 2008 Aug 01; 100(5):998-1009. PubMed ID: 18551526 [Abstract] [Full Text] [Related]
10. Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering. Wenk E, Meinel AJ, Wildy S, Merkle HP, Meinel L. Biomaterials; 2009 May 01; 30(13):2571-81. PubMed ID: 19157533 [Abstract] [Full Text] [Related]
11. Multiple-channel scaffolds to promote spinal cord axon regeneration. Moore MJ, Friedman JA, Lewellyn EB, Mantila SM, Krych AJ, Ameenuddin S, Knight AM, Lu L, Currier BL, Spinner RJ, Marsh RW, Windebank AJ, Yaszemski MJ. Biomaterials; 2006 Jan 01; 27(3):419-29. PubMed ID: 16137759 [Abstract] [Full Text] [Related]
12. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair. Shi X, Wang Y, Ren L, Zhao N, Gong Y, Wang DA. Acta Biomater; 2009 Jun 01; 5(5):1697-707. PubMed ID: 19217361 [Abstract] [Full Text] [Related]
13. Preparation and cell affinity of microtubular orientation-structured PLGA(70/30) blood vessel scaffold. Hu X, Shen H, Yang F, Bei J, Wang S. Biomaterials; 2008 Jul 01; 29(21):3128-36. PubMed ID: 18439673 [Abstract] [Full Text] [Related]
14. Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Baumann MD, Kang CE, Tator CH, Shoichet MS. Biomaterials; 2010 Oct 01; 31(30):7631-9. PubMed ID: 20656347 [Abstract] [Full Text] [Related]
16. In vitro evaluation of biodegradation of poly(lactic-co-glycolic acid) sponges. Yoshioka T, Kawazoe N, Tateishi T, Chen G. Biomaterials; 2008 Oct 01; 29(24-25):3438-43. PubMed ID: 18514306 [Abstract] [Full Text] [Related]
18. Experimental study on repair of the facial nerve with Schwann cells transfected with GDNF genes and PLGA conduits. Zhou L, Du HD, Tian HB, Li C, Tian J, Jiang JJ. Acta Otolaryngol; 2008 Nov 01; 128(11):1266-72. PubMed ID: 18607939 [Abstract] [Full Text] [Related]
20. 3D Poly(Lactic-co-glycolic acid) Scaffolds for Treating Spinal Cord Injury. Sun F, Shi T, Zhou T, Dong D, Xie J, Wang R, An X, Chen M, Cai J. J Biomed Nanotechnol; 2017 Mar 01; 13(3):290-302. PubMed ID: 29381284 [Abstract] [Full Text] [Related] Page: [Next] [New Search]