These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


328 related items for PubMed ID: 19196703

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Patterning, integration and characterisation of polymer optical oxygen sensors for microfluidic devices.
    Nock V, Blaikie RJ, David T.
    Lab Chip; 2008 Aug; 8(8):1300-7. PubMed ID: 18651072
    [Abstract] [Full Text] [Related]

  • 4. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J, Ellis AV, Voelcker NH.
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Rapid microfabrication of solvent-resistant biocompatible microfluidic devices.
    Hung LH, Lin R, Lee AP.
    Lab Chip; 2008 Jun; 8(6):983-7. PubMed ID: 18497921
    [Abstract] [Full Text] [Related]

  • 8. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.
    van Midwoud PM, Janse A, Merema MT, Groothuis GM, Verpoorte E.
    Anal Chem; 2012 May 01; 84(9):3938-44. PubMed ID: 22444457
    [Abstract] [Full Text] [Related]

  • 9. Three-dimensional interconnected microporous poly(dimethylsiloxane) microfluidic devices.
    Yuen PK, Su H, Goral VN, Fink KA.
    Lab Chip; 2011 Apr 21; 11(8):1541-4. PubMed ID: 21359315
    [Abstract] [Full Text] [Related]

  • 10. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells.
    Peterson SL, McDonald A, Gourley PL, Sasaki DY.
    J Biomed Mater Res A; 2005 Jan 01; 72(1):10-8. PubMed ID: 15534867
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Surface characterization using chemical force microscopy and the flow performance of modified polydimethylsiloxane for microfluidic device applications.
    Wang B, Abdulali-Kanji Z, Dodwell E, Horton JH, Oleschuk RD.
    Electrophoresis; 2003 May 01; 24(9):1442-50. PubMed ID: 12731032
    [Abstract] [Full Text] [Related]

  • 13. Functional patterning of PDMS microfluidic devices using integrated chemo-masks.
    Romanowsky MB, Heymann M, Abate AR, Krummel AT, Fraden S, Weitz DA.
    Lab Chip; 2010 Jun 21; 10(12):1521-4. PubMed ID: 20454730
    [Abstract] [Full Text] [Related]

  • 14. Polyurethane-based microfluidic devices for blood contacting applications.
    Wu WI, Sask KN, Brash JL, Selvaganapathy PR.
    Lab Chip; 2012 Mar 07; 12(5):960-70. PubMed ID: 22273592
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G, Wang J, Lee CC, Lu W, Lee SP, Leyton JV, Wu AM, Tseng HR.
    Anal Chem; 2006 Aug 01; 78(15):5543-51. PubMed ID: 16878894
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices.
    Harris J, Lee H, Vahidi B, Tu C, Cribbs D, Cotman C, Jeon NL.
    J Vis Exp; 2007 Aug 01; (9):410. PubMed ID: 18989450
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.