These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 19198328
1. Ambient air effects on electrical transport properties of ZnO nanorod transistors. Park JY, Kim JJ, Kim SS. J Nanosci Nanotechnol; 2008 Nov; 8(11):5929-33. PubMed ID: 19198328 [Abstract] [Full Text] [Related]
2. Comparison between the electrical properties of ZnO nanowires based field effect transistors fabricated by back- and top-gate approaches. Park YK, Umar A, Kim SH, Kim JH, Lee EW, Vaseem M, Hahn YB. J Nanosci Nanotechnol; 2008 Nov; 8(11):6010-6. PubMed ID: 19198339 [Abstract] [Full Text] [Related]
3. The fabrication of ZnO nanowire field-effect transistors by roll-transfer printing. Chang YK, Hong FC. Nanotechnology; 2009 May 13; 20(19):195302. PubMed ID: 19420638 [Abstract] [Full Text] [Related]
4. Fabrication and characterization of directly-assembled ZnO nanowire field effect transistors with polymer gate dielectrics. Yoon A, Hong WK, Lee T. J Nanosci Nanotechnol; 2007 Nov 13; 7(11):4101-5. PubMed ID: 18047128 [Abstract] [Full Text] [Related]
5. Negative differential resistance in carbon nanotube field-effect transistors with patterned gate oxide. Rinkiö M, Johansson A, Kotimäki V, Törmä P. ACS Nano; 2010 Jun 22; 4(6):3356-62. PubMed ID: 20524681 [Abstract] [Full Text] [Related]
6. Electrical bistabilities and operating mechanisms of memory devices fabricated utilizing ZnO quantum dot-multi-walled carbon nanotube nanocomposites. Li F, Son DI, Cho SH, Kim TW. Nanotechnology; 2009 May 06; 20(18):185202. PubMed ID: 19420606 [Abstract] [Full Text] [Related]
7. Enhanced secondary electron emission from group III nitride/ZnO coaxial nanorod heterostructures. Lau SP, Huang L, Yu SF, Yang H, Yoo JK, An SJ, Yi GC. Small; 2006 Jun 06; 2(6):736-40. PubMed ID: 17193114 [No Abstract] [Full Text] [Related]
8. Water-mediated Al metal transfer printing with contact inking for fabrication of thin-film transistors. Oh K, Lee BH, Hwang JK, Lee H, Im S, Sung MM. Small; 2009 Mar 06; 5(5):558-61. PubMed ID: 19199334 [No Abstract] [Full Text] [Related]
9. High-performance flexible transparent thin-film transistors using a hybrid gate dielectric and an amorphous zinc indium tin oxide channel. Liu J, Buchholz DB, Chang RP, Facchetti A, Marks TJ. Adv Mater; 2010 Jun 04; 22(21):2333-7. PubMed ID: 20491089 [No Abstract] [Full Text] [Related]
10. High electron mobility InAs nanowire field-effect transistors. Dayeh SA, Aplin DP, Zhou X, Yu PK, Yu ET, Wang D. Small; 2007 Feb 04; 3(2):326-32. PubMed ID: 17199246 [Abstract] [Full Text] [Related]
11. Adsorption of ammonia on graphene. Romero HE, Joshi P, Gupta AK, Gutierrez HR, Cole MW, Tadigadapa SA, Eklund PC. Nanotechnology; 2009 Jun 17; 20(24):245501. PubMed ID: 19468162 [Abstract] [Full Text] [Related]
12. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Ju S, Facchetti A, Xuan Y, Liu J, Ishikawa F, Ye P, Zhou C, Marks TJ, Janes DB. Nat Nanotechnol; 2007 Jun 17; 2(6):378-84. PubMed ID: 18654311 [Abstract] [Full Text] [Related]
13. The effect of excimer laser annealing on ZnO nanowires and their field effect transistors. Maeng J, Heo S, Jo G, Choe M, Kim S, Hwang H, Lee T. Nanotechnology; 2009 Mar 04; 20(9):095203. PubMed ID: 19417481 [Abstract] [Full Text] [Related]
14. A novel method for fabricating sub-16 nm footprint T-gate nanoimprint molds. Peng C, Liang X, Chou SY. Nanotechnology; 2009 May 06; 20(18):185302. PubMed ID: 19420609 [Abstract] [Full Text] [Related]
15. Stable field emission performance from urchin-like ZnO nanostructures. Jiang H, Hu J, Gu F, Li C. Nanotechnology; 2009 Feb 04; 20(5):055706. PubMed ID: 19417365 [Abstract] [Full Text] [Related]
16. Electrical transport and field-effect transistors using inkjet-printed SWCNT films having different functional side groups. Gracia-Espino E, Sala G, Pino F, Halonen N, Luomahaara J, Mäklin J, Tóth G, Kordás K, Jantunen H, Terrones M, Helistö P, Seppä H, Ajayan PM, Vajtai R. ACS Nano; 2010 Jun 22; 4(6):3318-24. PubMed ID: 20481513 [Abstract] [Full Text] [Related]
17. The growth and characterization of ZnO/ZnTe core-shell nanowires and the electrical properties of ZnO/ZnTe core-shell nanowire field effect transistor. Chao HY, You SH, Lu JY, Cheng JH, Chang YH, Liang CT, Wu CT. J Nanosci Nanotechnol; 2011 Mar 22; 11(3):2042-6. PubMed ID: 21449346 [Abstract] [Full Text] [Related]
18. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer. Son DI, Park DH, Choi WK, Cho SH, Kim WT, Kim TW. Nanotechnology; 2009 May 13; 20(19):195203. PubMed ID: 19420634 [Abstract] [Full Text] [Related]
19. Hybrid permeable-base transistors based on an indenofluorene derivative. Serbena JP, Hümmelgen IA, Hadizad T, Wang ZY. Small; 2006 Mar 13; 2(3):372-4. PubMed ID: 17193053 [No Abstract] [Full Text] [Related]
20. Effect of an ultrathin TiO(2) layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells. Park K, Zhang Q, Garcia BB, Zhou X, Jeong YH, Cao G. Adv Mater; 2010 Jun 04; 22(21):2329-32. PubMed ID: 20376847 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]