These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 1919925

  • 1. Plasmodium berghei ookinete densities in three anopheline species.
    Vaughan JA, Narum D, Azad AF.
    J Parasitol; 1991 Oct; 77(5):758-61. PubMed ID: 1919925
    [Abstract] [Full Text] [Related]

  • 2. Sporogonic development of Plasmodium yoelii in five anopheline species.
    Vaughan JA, Hensley L, Beier JC.
    J Parasitol; 1994 Oct; 80(5):674-81. PubMed ID: 7931901
    [Abstract] [Full Text] [Related]

  • 3. Proteolytic enzyme activity and Plasmodium falciparum sporogonic development in three species of Anopheles mosquitoes.
    Chege GM, Pumpuni CB, Beier JC.
    J Parasitol; 1996 Feb; 82(1):11-6. PubMed ID: 8627478
    [Abstract] [Full Text] [Related]

  • 4. The role of the mosquito peritrophic membrane in bloodmeal digestion and infectivity of Plasmodium species.
    Billingsley PF, Rudin W.
    J Parasitol; 1992 Jun; 78(3):430-40. PubMed ID: 1597785
    [Abstract] [Full Text] [Related]

  • 5. Plasmodium vivax: ookinete destruction and oocyst development arrest are responsible for Anopheles albimanus resistance to circumsporozoite phenotype VK247 parasites.
    Gonzalez-Ceron L, Rodriguez MH, Santillan F, Chavez B, Nettel JA, Hernandez-Avila JE, Kain KC.
    Exp Parasitol; 2001 Jul; 98(3):152-61. PubMed ID: 11527438
    [Abstract] [Full Text] [Related]

  • 6. Inhibitory activity of the anti-malarial atovaquone (566C80) against ookinetes, oocysts, and sporozoites of Plasmodium berghei.
    Fowler RE, Sinden RE, Pudney M.
    J Parasitol; 1995 Jun; 81(3):452-8. PubMed ID: 7776134
    [Abstract] [Full Text] [Related]

  • 7. Sporogonic development of cultured Plasmodium falciparum in six species of laboratory-reared Anopheles mosquitoes.
    Vaughan JA, Noden BH, Beier JC.
    Am J Trop Med Hyg; 1994 Aug; 51(2):233-43. PubMed ID: 8074258
    [Abstract] [Full Text] [Related]

  • 8. Hemolytic C-type lectin CEL-III from sea cucumber expressed in transgenic mosquitoes impairs malaria parasite development.
    Yoshida S, Shimada Y, Kondoh D, Kouzuma Y, Ghosh AK, Jacobs-Lorena M, Sinden RE.
    PLoS Pathog; 2007 Dec; 3(12):e192. PubMed ID: 18159942
    [Abstract] [Full Text] [Related]

  • 9. Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae.
    Vaughan JA, Noden BH, Beier JC.
    J Parasitol; 1992 Aug; 78(4):716-24. PubMed ID: 1635032
    [Abstract] [Full Text] [Related]

  • 10. Comparative studies on the infectivity of Plasmodium berghei gametocytes and ookinetes for gnotobiotic and xenobiotic Anopheles stephensi.
    Kurtti TJ, Munderloh UG.
    J Parasitol; 1986 Oct; 72(5):706-10. PubMed ID: 3543280
    [Abstract] [Full Text] [Related]

  • 11. Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion.
    Vlachou D, Zimmermann T, Cantera R, Janse CJ, Waters AP, Kafatos FC.
    Cell Microbiol; 2004 Jul; 6(7):671-85. PubMed ID: 15186403
    [Abstract] [Full Text] [Related]

  • 12. Analysis of the sporogonic development of Plasmodium falciparum and Plasmodium berghei in anopheline mosquitoes.
    Do Rosario VE, Vaughan JA, Coleman RE.
    Parassitologia; 1989 Apr; 31(1):101-11. PubMed ID: 2487889
    [Abstract] [Full Text] [Related]

  • 13. Susceptibility of Anopheles punctipennis and other Florida mosquitoes to Plasmodium berghei.
    Nayar JK, Young MD.
    J Parasitol; 1984 Feb; 70(1):192-4. PubMed ID: 6376750
    [No Abstract] [Full Text] [Related]

  • 14. Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions.
    Da DF, Churcher TS, Yerbanga RS, Yaméogo B, Sangaré I, Ouedraogo JB, Sinden RE, Blagborough AM, Cohuet A.
    Exp Parasitol; 2015 Feb; 149():74-83. PubMed ID: 25541384
    [Abstract] [Full Text] [Related]

  • 15. Rodent Plasmodium: population dynamics of early sporogony within Anopheles stephensi mosquitoes.
    Poudel SS, Newman RA, Vaughan JA.
    J Parasitol; 2008 Oct; 94(5):999-1008. PubMed ID: 18576764
    [Abstract] [Full Text] [Related]

  • 16. Hemolymph of Anopheles stephensi from noninfected and Plasmodium berghei-infected mosquitoes. 3. Carbohydrates.
    Mack SR, Samuels S, Vanderberg JP.
    J Parasitol; 1979 Apr; 65(2):217-21. PubMed ID: 376818
    [Abstract] [Full Text] [Related]

  • 17. Plasmodium berghei: infectivity of mice to Anopheles stephensi mosquitoes.
    Butcher GA, Sinden RE, Billker O.
    Exp Parasitol; 1996 Dec; 84(3):371-9. PubMed ID: 8948326
    [Abstract] [Full Text] [Related]

  • 18. Ontogeny of ookinete of Plasmodium berghei (NK 65): a scanning electron microscopic study.
    Rastogi M, Maitra SC, Sen AB.
    J Commun Dis; 1989 Jun; 21(2):129-32. PubMed ID: 2681394
    [Abstract] [Full Text] [Related]

  • 19. Factors regulating natural transmission of Plasmodium berghei to the mosquito vector, and the cloning of a transmission-blocking immunogen.
    Sinden RE, Barker GC, Paton MJ, Fleck SL, Butcher GA, Waters A, Janse CJ, Rodriguez MH.
    Parassitologia; 1993 Jul; 35 Suppl():107-12. PubMed ID: 7694225
    [Abstract] [Full Text] [Related]

  • 20. A possible key molecule for the invasion of the Plasmodium berghei ookinetes into the midgut epithelium of Anopheles gambiae mosquitoes.
    Toubarro DN, Ralha D, Carvalho S, Tomás AM, Almeida AP.
    In Vivo; 2010 Jul; 24(3):271-80. PubMed ID: 20554998
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.