These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Automated texture-based quantification of centrilobular nodularity and centrilobular emphysema in chest CT images. Ginsburg SB, Lynch DA, Bowler RP, Schroeder JD. Acad Radiol; 2012 Oct; 19(10):1241-51. PubMed ID: 22958719 [Abstract] [Full Text] [Related]
7. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy. Hirose T, Nitta N, Shiraishi J, Nagatani Y, Takahashi M, Murata K. Acad Radiol; 2008 Dec; 15(12):1505-12. PubMed ID: 19000867 [Abstract] [Full Text] [Related]
8. Dose reduction for semi-automated volumetry of hepatic metastasis in MDCT studies. Keil S, Plumhans C, Nagy IA, Schiffl K, Soza G, Behrendt FF, Mahnken AH, Günther RW, Das M. Invest Radiol; 2010 Feb; 45(2):77-81. PubMed ID: 20027116 [Abstract] [Full Text] [Related]
9. Influence of Sinogram-Affirmed Iterative Reconstruction on Computed Tomography-Based Lung Volumetry and Quantification of Pulmonary Emphysema. Baumueller S, Hilty R, Nguyen TD, Weder W, Alkadhi H, Frauenfelder T. J Comput Assist Tomogr; 2016 Feb; 40(1):96-101. PubMed ID: 26466107 [Abstract] [Full Text] [Related]
14. MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies. Xu Y, Sonka M, McLennan G, Guo J, Hoffman EA. IEEE Trans Med Imaging; 2006 Apr; 25(4):464-75. PubMed ID: 16608061 [Abstract] [Full Text] [Related]
15. Prediction of lobar collateral ventilation in 25 patients with severe emphysema by fissure analysis with CT. Reymond E, Jankowski A, Pison C, Bosson JL, Prieur M, Aniwidyaningsih W, Ferretti GR. AJR Am J Roentgenol; 2013 Oct; 201(4):W571-5. PubMed ID: 24059394 [Abstract] [Full Text] [Related]
17. Semi-automatic volumetric measurement of lung cancer using multi-detector CT effects of nodule characteristics. Iwano S, Okada T, Koike W, Matsuo K, Toya R, Yamazaki M, Ito S, Ito J, Naganwa S. Acad Radiol; 2009 Oct; 16(10):1179-86. PubMed ID: 19524456 [Abstract] [Full Text] [Related]
18. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. Suzuki K, Li F, Sone S, Doi K. IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352 [Abstract] [Full Text] [Related]