These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
357 related items for PubMed ID: 19206320
61. The reaction process of hydrogen absorption and desorption on the nanocomposite of hydrogenated graphite and lithium hydride. Miyaoka H, Ichikawa T, Kojima Y. Nanotechnology; 2009 May 20; 20(20):204021. PubMed ID: 19420669 [Abstract] [Full Text] [Related]
62. Local bonding and atomic environments in Ni-catalyzed complex hydrides. Graetz J, Chaudhuri S, Salguero TT, Vajo JJ, Meyer MS, Pinkerton FE. Nanotechnology; 2009 May 20; 20(20):204007. PubMed ID: 19420655 [Abstract] [Full Text] [Related]
63. Microwave-hydrothermal synthesis and characterization of nanostructured copper substituted ZnM2O4 (M = Al, Ga) spinels as precursors for thermally stable Cu catalysts. Conrad F, Massue C, Kühl S, Kunkes E, Girgsdies F, Kasatkin I, Zhang B, Friedrich M, Luo Y, Armbrüster M, Patzke GR, Behrens M. Nanoscale; 2012 Mar 21; 4(6):2018-28. PubMed ID: 22327266 [Abstract] [Full Text] [Related]
64. Laser writing of nanostructures on bulk Al via its ablation in liquids. Stratakis E, Zorba V, Barberoglou M, Fotakis C, Shafeev GA. Nanotechnology; 2009 Mar 11; 20(10):105303. PubMed ID: 19417518 [Abstract] [Full Text] [Related]
65. Assessing nanoparticle size effects on metal hydride thermodynamics using the Wulff construction. Kim KC, Dai B, Karl Johnson J, Sholl DS. Nanotechnology; 2009 May 20; 20(20):204001. PubMed ID: 19420649 [Abstract] [Full Text] [Related]
66. The formation mechanism and structural characterization of the mixed transition-metal complex hydride Mg2(FeH6)0.5(CoH5)0.5 obtained by reactive milling. Deledda S, Hauback BC. Nanotechnology; 2009 May 20; 20(20):204010. PubMed ID: 19420658 [Abstract] [Full Text] [Related]
67. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches. Meisner GP, Hu Q. Nanotechnology; 2009 May 20; 20(20):204023. PubMed ID: 19420671 [Abstract] [Full Text] [Related]
68. Insights into excitons confined to nanoscale systems: electron-hole interaction, binding energy, and photodissociation. Scholes GD. ACS Nano; 2008 Mar 20; 2(3):523-37. PubMed ID: 19206579 [Abstract] [Full Text] [Related]
69. Deep UV nano-microstructuring of substrates for surface plasmon resonance imaging. Dhawan A, Duval A, Nakkach M, Barbillon G, Moreau J, Canva M, Vo-Dinh T. Nanotechnology; 2011 Apr 22; 22(16):165301. PubMed ID: 21393822 [Abstract] [Full Text] [Related]
70. Pore size distribution and supercritical hydrogen adsorption in activated carbon fibers. Purewal JJ, Kabbour H, Vajo JJ, Ahn CC, Fultz B. Nanotechnology; 2009 May 20; 20(20):204012. PubMed ID: 19420660 [Abstract] [Full Text] [Related]
71. Synthesis and characterization of self-assembled nanofiber-bundles of V2O5: their electrochemical and field emission properties. Dewangan K, Sinha NN, Chavan PG, Sharma PK, Pandey AC, More MA, Joag DS, Munichandraiah N, Gajbhiye NS. Nanoscale; 2012 Jan 21; 4(2):645-51. PubMed ID: 22159298 [Abstract] [Full Text] [Related]