These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


683 related items for PubMed ID: 19206602

  • 1. Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption.
    Le F, Brandl DW, Urzhumov YA, Wang H, Kundu J, Halas NJ, Aizpurua J, Nordlander P.
    ACS Nano; 2008 Apr; 2(4):707-18. PubMed ID: 19206602
    [Abstract] [Full Text] [Related]

  • 2. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA.
    Acc Chem Res; 2008 Dec 07; 41(12):1578-86. PubMed ID: 18447366
    [Abstract] [Full Text] [Related]

  • 4. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S, Grady NK, Kundu J, Levin CS, Lassiter JB, Halas NJ.
    Chem Soc Rev; 2008 May 07; 37(5):898-911. PubMed ID: 18443675
    [Abstract] [Full Text] [Related]

  • 5. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW, Nehl CL.
    ACS Nano; 2008 Apr 07; 2(4):612-6. PubMed ID: 19206589
    [Abstract] [Full Text] [Related]

  • 6. The preparation of silver nanoparticle decorated silica nanowires on fused quartz as reusable versatile nanostructured surface-enhanced Raman scattering substrates.
    Hwang JS, Chen KY, Hong SJ, Chen SW, Syu WS, Kuo CW, Syu WY, Lin TY, Chiang HP, Chattopadhyay S, Chen KH, Chen LC.
    Nanotechnology; 2010 Jan 15; 21(2):025502. PubMed ID: 19955621
    [Abstract] [Full Text] [Related]

  • 7. Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.
    Wells SM, Retterer SD, Oran JM, Sepaniak MJ.
    ACS Nano; 2009 Dec 22; 3(12):3845-53. PubMed ID: 19911835
    [Abstract] [Full Text] [Related]

  • 8. The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering.
    D'Andrea C, Neri F, Ossi PM, Santo N, Trusso S.
    Nanotechnology; 2009 Jun 17; 20(24):245606. PubMed ID: 19471080
    [Abstract] [Full Text] [Related]

  • 9. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars.
    Chau YF, Lin YJ, Tsai DP.
    Opt Express; 2010 Feb 15; 18(4):3510-8. PubMed ID: 20389360
    [Abstract] [Full Text] [Related]

  • 10. Surface enhanced Raman spectroscopy of organic molecules deposited on gold sputtered substrates.
    Merlen A, Gadenne V, Romann J, Chevallier V, Patrone L, Valmalette JC.
    Nanotechnology; 2009 May 27; 20(21):215705. PubMed ID: 19423944
    [Abstract] [Full Text] [Related]

  • 11. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles.
    He D, Hu B, Yao QF, Wang K, Yu SH.
    ACS Nano; 2009 Dec 22; 3(12):3993-4002. PubMed ID: 19928883
    [Abstract] [Full Text] [Related]

  • 12. Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors.
    Caldwell JD, Glembocki O, Bezares FJ, Bassim ND, Rendell RW, Feygelson M, Ukaegbu M, Kasica R, Shirey L, Hosten C.
    ACS Nano; 2011 May 24; 5(5):4046-55. PubMed ID: 21480637
    [Abstract] [Full Text] [Related]

  • 13. Multiscale patterning of plasmonic metamaterials.
    Henzie J, Lee MH, Odom TW.
    Nat Nanotechnol; 2007 Sep 24; 2(9):549-54. PubMed ID: 18654366
    [Abstract] [Full Text] [Related]

  • 14. Effect of retardation on localized surface plasmon resonances in a metallic nanorod.
    Davis TJ, Vernon KC, Gómez DE.
    Opt Express; 2009 Dec 21; 17(26):23655-63. PubMed ID: 20052075
    [Abstract] [Full Text] [Related]

  • 15. Tuning the intensity of metal-enhanced fluorescence by engineering silver nanoparticle arrays.
    Yang B, Lu N, Qi D, Ma R, Wu Q, Hao J, Liu X, Mu Y, Reboud V, Kehagias N, Torres CM, Boey FY, Chen X, Chi L.
    Small; 2010 May 07; 6(9):1038-43. PubMed ID: 20394069
    [Abstract] [Full Text] [Related]

  • 16. Controlled assembly of plasmonic colloidal nanoparticle clusters.
    Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzán LM.
    Nanoscale; 2011 Apr 07; 3(4):1304-15. PubMed ID: 21229160
    [Abstract] [Full Text] [Related]

  • 17. Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells.
    Wang Q, Tang C, Chen J, Zhan P, Wang Z.
    Opt Express; 2011 Nov 21; 19(24):23889-900. PubMed ID: 22109413
    [Abstract] [Full Text] [Related]

  • 18. A SERS-active nanocrystalline pd substrate and its nanopatterning leading to biochip fabrication.
    Bhuvana T, Kulkarni GU.
    Small; 2008 May 21; 4(5):670-6. PubMed ID: 18491365
    [Abstract] [Full Text] [Related]

  • 19. Shape and size effects in the optical properties of metallic nanorods.
    Stefan Kooij E, Poelsema B.
    Phys Chem Chem Phys; 2006 Jul 28; 8(28):3349-57. PubMed ID: 16835684
    [Abstract] [Full Text] [Related]

  • 20. Gold mesoflower arrays with sub-10 nm intraparticle gaps for highly sensitive and repeatable surface enhanced Raman spectroscopy.
    Tian C, Liu Z, Jin J, Lebedkin S, Huang C, You H, Liu R, Wang L, Song X, Ding B, Barczewski M, Schimmel T, Fang J.
    Nanotechnology; 2012 Apr 27; 23(16):165604. PubMed ID: 22469765
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 35.