These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
361 related items for PubMed ID: 19206953
1. Nonequilibrium work relations for systems subject to mechanical and thermal changes. Chelli R. J Chem Phys; 2009 Feb 07; 130(5):054102. PubMed ID: 19206953 [Abstract] [Full Text] [Related]
2. Recovering the Crooks equation for dynamical systems in the isothermal-isobaric ensemble: a strategy based on the equations of motion. Chelli R, Marsili S, Barducci A, Procacci P. J Chem Phys; 2007 Jan 28; 126(4):044502. PubMed ID: 17286482 [Abstract] [Full Text] [Related]
3. Numerical verification of the generalized Crooks nonequilibrium work theorem for non-Hamiltonian molecular dynamics simulations. Chelli R, Marsili S, Barducci A, Procacci P. J Chem Phys; 2007 Jul 21; 127(3):034110. PubMed ID: 17655434 [Abstract] [Full Text] [Related]
4. The Jarzynski identity derived from general Hamiltonian or non-Hamiltonian dynamics reproducing NVT or NPT ensembles. Cuendet MA. J Chem Phys; 2006 Oct 14; 125(14):144109. PubMed ID: 17042581 [Abstract] [Full Text] [Related]
5. Hummer and Szabo-like potential of mean force estimator for bidirectional nonequilibrium pulling experiments/simulations. Nicolini P, Procacci P, Chelli R. J Phys Chem B; 2010 Jul 29; 114(29):9546-54. PubMed ID: 20597536 [Abstract] [Full Text] [Related]
6. Generalization of the Jarzynski and Crooks nonequilibrium work theorems in molecular dynamics simulations. Chelli R, Marsili S, Barducci A, Procacci P. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May 29; 75(5 Pt 1):050101. PubMed ID: 17677005 [Abstract] [Full Text] [Related]
7. An idealized model for nonequilibrium dynamics in molecular systems. Vogt M, Hernandez R. J Chem Phys; 2005 Oct 08; 123(14):144109. PubMed ID: 16238376 [Abstract] [Full Text] [Related]
8. A potential of mean force estimator based on nonequilibrium work exponential averages. Chelli R, Procacci P. Phys Chem Chem Phys; 2009 Feb 28; 11(8):1152-8. PubMed ID: 19209357 [Abstract] [Full Text] [Related]
9. A proof of Jarzynski's nonequilibrium work theorem for dynamical systems that conserve the canonical distribution. Schöll-Paschinger E, Dellago C. J Chem Phys; 2006 Aug 07; 125(5):054105. PubMed ID: 16942201 [Abstract] [Full Text] [Related]
10. Entropy-energy decomposition from nonequilibrium work trajectories. Nummela J, Yassin F, Andricioaei I. J Chem Phys; 2008 Jan 14; 128(2):024104. PubMed ID: 18205440 [Abstract] [Full Text] [Related]
11. Nonequilibrium free-energy relations for thermal changes. Williams SR, Searles DJ, Evans DJ. Phys Rev Lett; 2008 Jun 27; 100(25):250601. PubMed ID: 18643646 [Abstract] [Full Text] [Related]
12. Straightforward quantum-mechanical derivation of the Crooks fluctuation theorem and the Jarzynski equality. Cohen D, Imry Y. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul 27; 86(1 Pt 1):011111. PubMed ID: 23005372 [Abstract] [Full Text] [Related]
13. Unified treatment of the quantum fluctuation theorem and the Jarzynski equality in terms of microscopic reversibility. Monnai T. Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug 27; 72(2 Pt 2):027102. PubMed ID: 16196752 [Abstract] [Full Text] [Related]
14. A differential fluctuation theorem. Maragakis P, Spichty M, Karplus M. J Phys Chem B; 2008 May 15; 112(19):6168-74. PubMed ID: 18331019 [Abstract] [Full Text] [Related]
15. Statistical mechanical theory for steady state systems. V. Nonequilibrium probability density. Attard P. J Chem Phys; 2006 Jun 14; 124(22):224103. PubMed ID: 16784259 [Abstract] [Full Text] [Related]
16. Nonequilibrium potential function of chemically driven single macromolecules via Jarzynski-type Log-Mean-Exponential Heat. Qian H. J Phys Chem B; 2005 Dec 15; 109(49):23624-8. PubMed ID: 16375340 [Abstract] [Full Text] [Related]
17. Estimation of free-energy differences from computed work distributions: an application of Jarzynski's equality. Echeverria I, Amzel LM. J Phys Chem B; 2012 Sep 13; 116(36):10986-95. PubMed ID: 22849340 [Abstract] [Full Text] [Related]
18. Fluctuation theorems and the generalized Gibbs ensemble in integrable systems. Hickey JM, Genway S. Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug 13; 90(2):022107. PubMed ID: 25215689 [Abstract] [Full Text] [Related]
19. Nonequilibrium work fluctuations for oscillators in non-Markovian baths. Mai T, Dhar A. Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun 13; 75(6 Pt 1):061101. PubMed ID: 17677214 [Abstract] [Full Text] [Related]
20. Nonequilibrium fluctuation theorems in the presence of local heating. Pradhan P, Kafri Y, Levine D. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr 13; 77(4 Pt 1):041129. PubMed ID: 18517600 [Abstract] [Full Text] [Related] Page: [Next] [New Search]