These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
136 related items for PubMed ID: 19207721
1. Cilostamide produces hyperpolarization associated with K(ATP) channel activation, but does not augment endothelium-derived hyperpolarization in rat mesenteric arteries. Kansui Y, Goto K, Fujii K, Oniki H, Matsumura K, Iida M. Clin Exp Pharmacol Physiol; 2009 Jul; 36(7):729-33. PubMed ID: 19207721 [Abstract] [Full Text] [Related]
2. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. Zygmunt PM, Plane F, Paulsson M, Garland CJ, Högestätt ED. Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786 [Abstract] [Full Text] [Related]
3. Sources of Ca2+ in relation to generation of acetylcholine-induced endothelium-dependent hyperpolarization in rat mesenteric artery. Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A. Br J Pharmacol; 1997 Apr; 120(7):1328-34. PubMed ID: 9105709 [Abstract] [Full Text] [Related]
4. Critical role of gap junctions in endothelium-dependent hyperpolarization in rat mesenteric arteries. Goto K, Fujii K, Kansui Y, Abe I, Iida M. Clin Exp Pharmacol Physiol; 2002 Jul; 29(7):595-602. PubMed ID: 12060103 [Abstract] [Full Text] [Related]
5. Alterations in endothelium-dependent hyperpolarization and relaxation in mesenteric arteries from streptozotocin-induced diabetic rats. Fukao M, Hattori Y, Kanno M, Sakuma I, Kitabatake A. Br J Pharmacol; 1997 Aug; 121(7):1383-91. PubMed ID: 9257918 [Abstract] [Full Text] [Related]
6. Characterization and modulation of EDHF-mediated relaxations in the rat isolated superior mesenteric arterial bed. McCulloch AI, Bottrill FE, Randall MD, Hiley CR. Br J Pharmacol; 1997 Apr; 120(8):1431-8. PubMed ID: 9113362 [Abstract] [Full Text] [Related]
7. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Dong H, Waldron GJ, Cole WC, Triggle CR. Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009 [Abstract] [Full Text] [Related]
8. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. Shi Y, Ku DD, Man RY, Vanhoutte PM. J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165 [Abstract] [Full Text] [Related]
9. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM, Costa CA, Carvalho LC, Brandão RM, Rangel BM, Tano T, Soares de Moura R, Resende AC. Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511 [Abstract] [Full Text] [Related]
10. Effects of fluvastatin on endothelium-derived hyperpolarizing factor- and nitric oxide-mediated relaxations in arteries of hypertensive rats. Kansui Y, Fujii K, Goto K, Abe I, Iida M. Clin Exp Pharmacol Physiol; 2004 May; 31(5-6):354-9. PubMed ID: 15191411 [Abstract] [Full Text] [Related]
11. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y, Otsuka A, Tanaka H, Shigenobu K. Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [Abstract] [Full Text] [Related]
12. Cannabinoid CB1 receptor and endothelium-dependent hyperpolarization in guinea-pig carotid, rat mesenteric and porcine coronary arteries. Chataigneau T, Félétou M, Thollon C, Villeneuve N, Vilaine JP, Duhault J, Vanhoutte PM. Br J Pharmacol; 1998 Mar; 123(5):968-74. PubMed ID: 9535027 [Abstract] [Full Text] [Related]
13. Role of Ba2+-resistant K+ channels in endothelium-dependent hyperpolarization of rat small mesenteric arteries. Breyne J, Vanheel BJ. Can J Physiol Pharmacol; 2004 Jan; 82(1):65-71. PubMed ID: 15052307 [Abstract] [Full Text] [Related]
14. Varying extracellular [K+]: a functional approach to separating EDHF- and EDNO-related mechanisms in perfused rat mesenteric arterial bed. Adeagbo AS, Triggle CR. J Cardiovasc Pharmacol; 1993 Mar; 21(3):423-9. PubMed ID: 7681503 [Abstract] [Full Text] [Related]
15. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat. Lagaud GJ, Skarsgard PL, Laher I, van Breemen C. J Pharmacol Exp Ther; 1999 Aug; 290(2):832-9. PubMed ID: 10411599 [Abstract] [Full Text] [Related]
16. [Role of endothelium-derived hyperpolarizing factor in shear stress-induced endothelium-dependent relaxations of rats]. Zhao HY, Liu Q, Chi BR. Yao Xue Xue Bao; 2005 Jun; 40(6):491-5. PubMed ID: 16144311 [Abstract] [Full Text] [Related]
17. Role of endothelium in regulation of smooth muscle membrane potential and tone in the rabbit middle cerebral artery. Yamakawa N, Ohhashi M, Waga S, Itoh T. Br J Pharmacol; 1997 Aug; 121(7):1315-22. PubMed ID: 9257909 [Abstract] [Full Text] [Related]
18. Sex differences in the relative contributions of nitric oxide and EDHF to agonist-stimulated endothelium-dependent relaxations in the rat isolated mesenteric arterial bed. McCulloch AI, Randall MD. Br J Pharmacol; 1998 Apr; 123(8):1700-6. PubMed ID: 9605578 [Abstract] [Full Text] [Related]