These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


661 related items for PubMed ID: 19212837

  • 1. Zebrafish temperature selection and synchronization of locomotor activity circadian rhythm to ahemeral cycles of light and temperature.
    López-Olmeda JF, Sánchez-Vázquez FJ.
    Chronobiol Int; 2009 Feb; 26(2):200-18. PubMed ID: 19212837
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ, Firth BT, Belan I.
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [Abstract] [Full Text] [Related]

  • 4. Feeding entrainment of daily rhythms of locomotor activity and clock gene expression in zebrafish brain.
    Sanchez JA, Sanchez-Vazquez FJ.
    Chronobiol Int; 2009 Aug; 26(6):1120-35. PubMed ID: 19731109
    [Abstract] [Full Text] [Related]

  • 5. Feeding entrainment of food-anticipatory activity and per1 expression in the brain and liver of zebrafish under different lighting and feeding conditions.
    López-Olmeda JF, Tartaglione EV, de la Iglesia HO, Sánchez-Vázquez FJ.
    Chronobiol Int; 2010 Aug; 27(7):1380-400. PubMed ID: 20795882
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Circadian entrainment to light-dark cycles involves extracellular nitric oxide communication within the suprachiasmatic nuclei.
    Plano SA, Golombek DA, Chiesa JJ.
    Eur J Neurosci; 2010 Mar; 31(5):876-82. PubMed ID: 20180840
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Paradoxical masking effects of bright photophase and high temperature in Drosophila malerkotliana.
    Sharma S, Thakurdas P, Sinam B, Joshi D.
    Chronobiol Int; 2012 Mar; 29(2):157-65. PubMed ID: 22324554
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Circadian rhythms of embryonic development and hatching in fish: a comparative study of zebrafish (diurnal), Senegalese sole (nocturnal), and Somalian cavefish (blind).
    Villamizar N, Blanco-Vives B, Oliveira C, Dinis MT, Di Rosa V, Negrini P, Bertolucci C, Sánchez-Vázquez FJ.
    Chronobiol Int; 2013 Aug; 30(7):889-900. PubMed ID: 23697903
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Dissociation of the circadian system of Octodon degus by T28 and T21 light-dark cycles.
    Vivanco P, Otalora BB, Rol MA, Madrid JA.
    Chronobiol Int; 2010 Sep; 27(8):1580-95. PubMed ID: 20854136
    [Abstract] [Full Text] [Related]

  • 19. Demand-feeding rhythms and feeding-entrainment of locomotor activity rhythms in tench (Tinca tinca).
    Herrero MJ, Pascual M, Madrid JA, Sánchez-Vázquez FJ.
    Physiol Behav; 2005 Mar 31; 84(4):595-605. PubMed ID: 15811395
    [Abstract] [Full Text] [Related]

  • 20. Entrainment of circadian rhythm by ambient temperature cycles in mice.
    Refinetti R.
    J Biol Rhythms; 2010 Aug 31; 25(4):247-56. PubMed ID: 20679494
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 34.