These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


316 related items for PubMed ID: 19215066

  • 1. Effects of probe length, probe geometry, and redox-tag placement on the performance of the electrochemical E-DNA sensor.
    Lubin AA, Hunt BV, White RJ, Plaxco KW.
    Anal Chem; 2009 Mar 15; 81(6):2150-8. PubMed ID: 19215066
    [Abstract] [Full Text] [Related]

  • 2. Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing.
    Xiao Y, Lai RY, Plaxco KW.
    Nat Protoc; 2007 Mar 15; 2(11):2875-80. PubMed ID: 18007622
    [Abstract] [Full Text] [Related]

  • 3. Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy.
    Neugebauer S, Zimdars A, Liepold P, Gebala M, Schuhmann W, Hartwich G.
    Chembiochem; 2009 May 04; 10(7):1193-9. PubMed ID: 19353601
    [Abstract] [Full Text] [Related]

  • 4. Redox polymer and probe DNA tethered to gold electrodes for enzyme-amplified amperometric detection of DNA hybridization.
    Kavanagh P, Leech D.
    Anal Chem; 2006 Apr 15; 78(8):2710-6. PubMed ID: 16615783
    [Abstract] [Full Text] [Related]

  • 5. Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor.
    Kjällman TH, Peng H, Soeller C, Travas-Sejdic J.
    Anal Chem; 2008 Dec 15; 80(24):9460-6. PubMed ID: 19006336
    [Abstract] [Full Text] [Related]

  • 6. Effect of redox label tether length and flexibility on sensor performance of displacement-based electrochemical DNA sensors.
    Yu ZG, Zaitouna AJ, Lai RY.
    Anal Chim Acta; 2014 Feb 17; 812():176-83. PubMed ID: 24491779
    [Abstract] [Full Text] [Related]

  • 7. Electrogenerated chemiluminescence DNA biosensor based on hairpin DNA probe labeled with ruthenium complex.
    Zhang J, Qi H, Li Y, Yang J, Gao Q, Zhang C.
    Anal Chem; 2008 Apr 15; 80(8):2888-94. PubMed ID: 18338873
    [Abstract] [Full Text] [Related]

  • 8. A dual-signalling electrochemical DNA sensor based on target hybridization-induced change in DNA probe flexibility.
    Yang W, Lai RY.
    Chem Commun (Camb); 2012 Sep 07; 48(69):8703-5. PubMed ID: 22825042
    [Abstract] [Full Text] [Related]

  • 9. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay.
    Zhang Y, Wang Y, Wang H, Jiang JH, Shen GL, Yu RQ, Li J.
    Anal Chem; 2009 Mar 01; 81(5):1982-7. PubMed ID: 19173619
    [Abstract] [Full Text] [Related]

  • 10. Linear, redox modified DNA probes as electrochemical DNA sensors.
    Ricci F, Lai RY, Plaxco KW.
    Chem Commun (Camb); 2007 Sep 28; (36):3768-70. PubMed ID: 17851622
    [Abstract] [Full Text] [Related]

  • 11. Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor.
    Ahangar LE, Mehrgardi MA.
    Biosens Bioelectron; 2012 Sep 28; 38(1):252-7. PubMed ID: 22727625
    [Abstract] [Full Text] [Related]

  • 12. Comparison of the stem-loop and linear probe-based electrochemical DNA sensors by alternating current voltammetry and cyclic voltammetry.
    Yang W, Lai RY.
    Langmuir; 2011 Dec 06; 27(23):14669-77. PubMed ID: 21981414
    [Abstract] [Full Text] [Related]

  • 13. A DNA electrochemical sensor based on nanogold-modified poly-2,6-pyridinedicarboxylic acid film and detection of PAT gene fragment.
    Yang J, Yang T, Feng Y, Jiao K.
    Anal Biochem; 2007 Jun 01; 365(1):24-30. PubMed ID: 17420003
    [Abstract] [Full Text] [Related]

  • 14. Functionalization of single-walled carbon nanotubes for direct and selective electrochemical detection of DNA.
    Zhang QD, Piro B, Noël V, Reisberg S, Pham MC.
    Analyst; 2011 Mar 07; 136(5):1023-8. PubMed ID: 21165475
    [Abstract] [Full Text] [Related]

  • 15. Computer simulation study of probe-target hybridization in model DNA microarrays: effect of probe surface density and target concentration.
    Jayaraman A, Hall CK, Genzer J.
    J Chem Phys; 2007 Oct 14; 127(14):144912. PubMed ID: 17935444
    [Abstract] [Full Text] [Related]

  • 16. Electrochemical DNA biosensor for the detection of specific gene related to Trichoderma harzianum species.
    Siddiquee S, Yusof NA, Salleh AB, Abu Bakar F, Heng LY.
    Bioelectrochemistry; 2010 Aug 14; 79(1):31-6. PubMed ID: 19945357
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Development of an electrochemical polypyrrole-based DNA sensor and subsequent studies on the effects of probe and target length on performance.
    Booth MA, Harbison S, Travas-Sejdic J.
    Biosens Bioelectron; 2011 Oct 15; 28(1):362-7. PubMed ID: 21840199
    [Abstract] [Full Text] [Related]

  • 19. Effect of structure variation of the aptamer-DNA duplex probe on the performance of displacement-based electrochemical aptamer sensors.
    Pang J, Zhang Z, Jin H.
    Biosens Bioelectron; 2016 Mar 15; 77():174-81. PubMed ID: 26406458
    [Abstract] [Full Text] [Related]

  • 20. DNA interactions with a Methylene Blue redox indicator depend on the DNA length and are sequence specific.
    Farjami E, Clima L, Gothelf KV, Ferapontova EE.
    Analyst; 2010 Jun 15; 135(6):1443-8. PubMed ID: 20369213
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.