These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


738 related items for PubMed ID: 19216546

  • 1. Net-like assembly of Au nanoparticles as a highly active substrate for surface-enhanced Raman and infrared spectroscopy.
    Luo Z, Yang W, Peng A, Ma Y, Fu H, Yao J.
    J Phys Chem A; 2009 Mar 19; 113(11):2467-72. PubMed ID: 19216546
    [Abstract] [Full Text] [Related]

  • 2. Core-shell nanopillars of fullerene C60/C70 loading with colloidal Au nanoparticles: a Raman scattering investigation.
    Luo Z, Zhao YS, Yang W, Peng A, Ma Y, Fu H, Yao J.
    J Phys Chem A; 2009 Sep 03; 113(35):9612-6. PubMed ID: 19653673
    [Abstract] [Full Text] [Related]

  • 3. Multilayer structures of self-assembled gold nanoparticles as a unique SERS and SEIRA substrate.
    Baia M, Toderas F, Baia L, Maniu D, Astilean S.
    Chemphyschem; 2009 May 11; 10(7):1106-11. PubMed ID: 19322798
    [Abstract] [Full Text] [Related]

  • 4. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M, Brolo AG.
    Chemphyschem; 2008 Sep 15; 9(13):1899-907. PubMed ID: 18704901
    [Abstract] [Full Text] [Related]

  • 5. Single gold microshell tailored to sensitive surface enhanced Raman scattering probe.
    Piao L, Park S, Lee HB, Kim K, Kim J, Chung TD.
    Anal Chem; 2010 Jan 01; 82(1):447-51. PubMed ID: 19994858
    [Abstract] [Full Text] [Related]

  • 6. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M, Zhang Z, Zhu N, Wang F, Zhao XS, Cao T.
    Langmuir; 2009 Apr 21; 25(8):4347-51. PubMed ID: 19320428
    [Abstract] [Full Text] [Related]

  • 7. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R, Lipert RJ, Porter MD.
    Anal Chem; 2008 Mar 15; 80(6):2265-71. PubMed ID: 18290676
    [Abstract] [Full Text] [Related]

  • 8. Hybrid surface-enhanced Raman scattering substrate from gold nanoparticle and photonic crystal: maneuverability and uniformity of Raman spectra.
    Wu CY, Huang CC, Jhang JS, Liu AC, Chiang CC, Hsieh ML, Huang PJ, Tuyen le D, Minh le Q, Yang TS, Chau LK, Kan HC, Hsu CC.
    Opt Express; 2009 Nov 23; 17(24):21522-9. PubMed ID: 19997393
    [Abstract] [Full Text] [Related]

  • 9. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy.
    Jiang YX, Li JF, Wu DY, Yang ZL, Ren B, Hu JW, Chow YL, Tian ZQ.
    Chem Commun (Camb); 2007 Nov 28; (44):4608-10. PubMed ID: 17989807
    [Abstract] [Full Text] [Related]

  • 10. Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS.
    Polavarapu L, Xu QH.
    Langmuir; 2008 Oct 07; 24(19):10608-11. PubMed ID: 18729527
    [Abstract] [Full Text] [Related]

  • 11. In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters.
    Souza GR, Levin CS, Hajitou A, Pasqualini R, Arap W, Miller JH.
    Anal Chem; 2006 Sep 01; 78(17):6232-7. PubMed ID: 16944906
    [Abstract] [Full Text] [Related]

  • 12. [Surface-enhanced Raman spectroscopic studies on the thiophenol adsorbed on novel Ag-Au alloy nanoparticles].
    Wang M, Yao JL, Gu RA.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jun 01; 27(6):1136-9. PubMed ID: 17763776
    [Abstract] [Full Text] [Related]

  • 13. Studies of surface-enhanced Raman scattering of C60 Langmuir-Blodgett film on a new substrate.
    Xu G, Fang Y.
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun 01; 70(1):104-8. PubMed ID: 17889595
    [Abstract] [Full Text] [Related]

  • 14. Structural influence on Raman scattering of a new C60 thin film prepared by AAO template with the method of pressure difference.
    Zhixun L, Yan F.
    J Comb Chem; 2006 Jun 01; 8(4):500-4. PubMed ID: 16827561
    [Abstract] [Full Text] [Related]

  • 15. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z, Li Y, Li Z, Wu D, Kang J, Xu H, Sun M.
    J Chem Phys; 2009 Jun 21; 130(23):234705. PubMed ID: 19548748
    [Abstract] [Full Text] [Related]

  • 16. Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy.
    Ruan C, Eres G, Wang W, Zhang Z, Gu B.
    Langmuir; 2007 May 08; 23(10):5757-60. PubMed ID: 17425344
    [Abstract] [Full Text] [Related]

  • 17. Synthesis of AgcoreAushell bimetallic nanoparticles for immunoassay based on surface-enhanced Raman spectroscopy.
    Cui Y, Ren B, Yao JL, Gu RA, Tian ZQ.
    J Phys Chem B; 2006 Mar 09; 110(9):4002-6. PubMed ID: 16509689
    [Abstract] [Full Text] [Related]

  • 18. Self-assembly of lambda-DNA networks/Ag nanoparticles: hybrid architecture and active-SERS substrate.
    Peng C, Song Y, Wei G, Zhang W, Li Z, Dong WF.
    J Colloid Interface Sci; 2008 Jan 01; 317(1):183-90. PubMed ID: 17931640
    [Abstract] [Full Text] [Related]

  • 19. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper.
    Kim K, Lee HS.
    J Phys Chem B; 2005 Oct 13; 109(40):18929-34. PubMed ID: 16853437
    [Abstract] [Full Text] [Related]

  • 20. Deposition method for preparing SERS-active gold nanoparticle substrates.
    Kho KW, Shen ZX, Zeng HC, Soo KC, Olivo M.
    Anal Chem; 2005 Nov 15; 77(22):7462-71. PubMed ID: 16285701
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 37.