These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 19218315

  • 1. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.
    Liu Q, Zhu A, Chai L, Zhou W, Yu K, Ding J, Xu J, Deng X.
    J Exp Bot; 2009; 60(3):801-13. PubMed ID: 19218315
    [Abstract] [Full Text] [Related]

  • 2. Use of a custom array to study differentially expressed genes during blood orange (Citrus sinensis L. Osbeck) ripening.
    Bernardi J, Licciardello C, Russo MP, Luisa Chiusano M, Carletti G, Recupero GR, Marocco A.
    J Plant Physiol; 2010 Mar 01; 167(4):301-10. PubMed ID: 19864041
    [Abstract] [Full Text] [Related]

  • 3. Transcriptome and weighted gene co-expression network analyses reveal key genes and pathways involved in early fruit ripening in Citrus sinensis.
    Chen J, Xie L, Lin Y, Zhong B, Wan S.
    BMC Genomics; 2024 Jul 30; 25(1):735. PubMed ID: 39080567
    [Abstract] [Full Text] [Related]

  • 4. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus.
    Wu J, Xu Z, Zhang Y, Chai L, Yi H, Deng X.
    J Exp Bot; 2014 Apr 30; 65(6):1651-71. PubMed ID: 24600016
    [Abstract] [Full Text] [Related]

  • 5. Identification of differentially expressed genes in a spontaneous altered leaf shape mutant of the navel orange [Citrus sinensis (L.) Osbeck].
    Da X, Yu K, Shen S, Zhang Y, Wu J, Yi H.
    Plant Physiol Biochem; 2012 Jul 30; 56():97-103. PubMed ID: 22609459
    [Abstract] [Full Text] [Related]

  • 6. Comparative transcriptome analyses between a spontaneous late-ripening sweet orange mutant and its wild type suggest the functions of ABA, sucrose and JA during citrus fruit ripening.
    Zhang YJ, Wang XJ, Wu JX, Chen SY, Chen H, Chai LJ, Yi HL.
    PLoS One; 2014 Jul 30; 9(12):e116056. PubMed ID: 25551568
    [Abstract] [Full Text] [Related]

  • 7. A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck).
    Liu Q, Xu J, Liu Y, Zhao X, Deng X, Guo L, Gu J.
    J Exp Bot; 2007 Jul 30; 58(15-16):4161-71. PubMed ID: 18182424
    [Abstract] [Full Text] [Related]

  • 8. Comparative transcripts profiling reveals new insight into molecular processes regulating lycopene accumulation in a sweet orange (Citrus sinensis) red-flesh mutant.
    Xu Q, Yu K, Zhu A, Ye J, Liu Q, Zhang J, Deng X.
    BMC Genomics; 2009 Nov 18; 10():540. PubMed ID: 19922663
    [Abstract] [Full Text] [Related]

  • 9. Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis).
    Yu K, Xu Q, Da X, Guo F, Ding Y, Deng X.
    BMC Genomics; 2012 Jan 10; 13():10. PubMed ID: 22230690
    [Abstract] [Full Text] [Related]

  • 10. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.
    Romero P, Rodrigo MJ, Alférez F, Ballester AR, González-Candelas L, Zacarías L, Lafuente MT.
    J Exp Bot; 2012 Apr 10; 63(7):2753-67. PubMed ID: 22315241
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray.
    Ge XX, Chai LJ, Liu Z, Wu XM, Deng XX, Guo WW.
    Planta; 2012 Oct 10; 236(4):1107-24. PubMed ID: 22622359
    [Abstract] [Full Text] [Related]

  • 13. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit.
    Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M.
    Plant Physiol; 2004 Feb 10; 134(2):824-37. PubMed ID: 14739348
    [Abstract] [Full Text] [Related]

  • 14. Comparative transcriptome and proteome profiling of two Citrus sinensis cultivars during fruit development and ripening.
    Wang JH, Liu JJ, Chen KL, Li HW, He J, Guan B, He L.
    BMC Genomics; 2017 Dec 21; 18(1):984. PubMed ID: 29268697
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck).
    Rodrigo MJ, Alquezar B, Zacarías L.
    J Exp Bot; 2006 Dec 21; 57(3):633-43. PubMed ID: 16396998
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Identification of a GCC transcription factor responding to fruit colour change events in citrus through the transcriptomic analyses of two mutants.
    Ríos G, Naranjo MA, Rodrigo MJ, Alós E, Zacarías L, Cercós M, Talón M.
    BMC Plant Biol; 2010 Dec 15; 10():276. PubMed ID: 21159189
    [Abstract] [Full Text] [Related]

  • 20. Identification of flowering-related genes between early flowering trifoliate orange mutant and wild-type trifoliate orange (Poncirus trifoliata L. Raf.) by suppression subtraction hybridization (SSH) and macroarray.
    Zhang JZ, Li ZM, Yao JL, Hu CG.
    Gene; 2009 Feb 01; 430(1-2):95-104. PubMed ID: 18930791
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.