These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


216 related items for PubMed ID: 1921970

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Catabolite repression of the xyl operon in Bacillus megaterium.
    Rygus T, Hillen W.
    J Bacteriol; 1992 May; 174(9):3049-55. PubMed ID: 1569031
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Molecular cloning, structure, promoters and regulatory elements for transcription of the Bacillus licheniformis encoded regulon for xylose utilization.
    Scheler A, Rygus T, Allmansberger R, Hillen W.
    Arch Microbiol; 1991 May; 155(6):526-34. PubMed ID: 1953294
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Regulation of the Bacillus subtilis W23 xylose utilization operon: interaction of the Xyl repressor with the xyl operator and the inducer xylose.
    Gärtner D, Degenkolb J, Ripperger JA, Allmansberger R, Hillen W.
    Mol Gen Genet; 1992 Apr; 232(3):415-22. PubMed ID: 1588910
    [Abstract] [Full Text] [Related]

  • 9. Development and characterization of a xylose-dependent system for expression of cloned genes in Bacillus subtilis: conditional complementation of a teichoic acid mutant.
    Bhavsar AP, Zhao X, Brown ED.
    Appl Environ Microbiol; 2001 Jan; 67(1):403-10. PubMed ID: 11133472
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Glucose and glucose-6-phosphate interaction with Xyl repressor proteins from Bacillus spp. may contribute to regulation of xylose utilization.
    Dahl MK, Schmiedel D, Hillen W.
    J Bacteriol; 1995 Oct; 177(19):5467-72. PubMed ID: 7559331
    [Abstract] [Full Text] [Related]

  • 14. Regulation of mtl operon promoter of Bacillus subtilis: requirements of its use in expression vectors.
    Heravi KM, Wenzel M, Altenbuchner J.
    Microb Cell Fact; 2011 Oct 20; 10():83. PubMed ID: 22014119
    [Abstract] [Full Text] [Related]

  • 15. Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator.
    Kreuzer P, Gärtner D, Allmansberger R, Hillen W.
    J Bacteriol; 1989 Jul 20; 171(7):3840-5. PubMed ID: 2544559
    [Abstract] [Full Text] [Related]

  • 16. Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis.
    Weickert MJ, Chambliss GH.
    Proc Natl Acad Sci U S A; 1990 Aug 20; 87(16):6238-42. PubMed ID: 2117276
    [Abstract] [Full Text] [Related]

  • 17. Regulation of Staphylococcus xylosus xylose utilization genes at the molecular level.
    Sizemore C, Wieland B, Götz F, Hillen W.
    J Bacteriol; 1992 May 20; 174(9):3042-8. PubMed ID: 1569030
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.