These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


163 related items for PubMed ID: 19219993

  • 1. Photoelectrochemical study of the band structure of Zn(2)SnO(4) prepared by the hydrothermal method.
    Alpuche-Aviles MA, Wu Y.
    J Am Chem Soc; 2009 Mar 11; 131(9):3216-24. PubMed ID: 19219993
    [Abstract] [Full Text] [Related]

  • 2. Photocatalytic removal of NO and HCHO over nanocrystalline Zn2SnO4 microcubes for indoor air purification.
    Ai Z, Lee S, Huang Y, Ho W, Zhang L.
    J Hazard Mater; 2010 Jul 15; 179(1-3):141-50. PubMed ID: 20346586
    [Abstract] [Full Text] [Related]

  • 3. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G, Hagfeldt A.
    Acc Chem Res; 2009 Nov 17; 42(11):1819-26. PubMed ID: 19845388
    [Abstract] [Full Text] [Related]

  • 4. Automated electrochemical synthesis and photoelectrochemical characterization of Zn1-xCo(x)O thin films for solar hydrogen production.
    Jaramillo TF, Baeck SH, Kleiman-Shwarsctein A, Choi KS, Stucky GD, McFarland EW.
    J Comb Chem; 2005 Nov 17; 7(2):264-71. PubMed ID: 15762755
    [Abstract] [Full Text] [Related]

  • 5. The origin of higher open-circuit voltage in Zn-doped TiO2 nanoparticle-based dye-sensitized solar cells.
    Zhu F, Zhang P, Wu X, Fu L, Zhang J, Xu D.
    Chemphyschem; 2012 Nov 12; 13(16):3731-7. PubMed ID: 22899421
    [Abstract] [Full Text] [Related]

  • 6. Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO(2):Zn2+ nanocrystals.
    Li L, Liu J, Su Y, Li G, Chen X, Qiu X, Yan T.
    Nanotechnology; 2009 Apr 15; 20(15):155706. PubMed ID: 19420558
    [Abstract] [Full Text] [Related]

  • 7. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies.
    Sakai N, Ebina Y, Takada K, Sasaki T.
    J Am Chem Soc; 2004 May 12; 126(18):5851-8. PubMed ID: 15125677
    [Abstract] [Full Text] [Related]

  • 8. Effect of layer-by-layer assembled SnO2 interfacial layers in photovoltaic properties of dye-sensitized solar cells.
    Kim YJ, Kim KH, Kang P, Kim HJ, Choi YS, Lee WI.
    Langmuir; 2012 Jul 17; 28(28):10620-6. PubMed ID: 22721411
    [Abstract] [Full Text] [Related]

  • 9. Role of electrolytes on charge recombination in dye-sensitized TiO(2) solar cell (1): the case of solar cells using the I(-)/I(3)(-) redox couple.
    Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y, Yanagida S.
    J Phys Chem B; 2005 Mar 03; 109(8):3480-7. PubMed ID: 16851382
    [Abstract] [Full Text] [Related]

  • 10. Effects of Cr2O3 modification on the performance of SnO2 electrodes in DSSCs.
    Choi SY, Kim MH, Kwon YU.
    Phys Chem Chem Phys; 2012 Mar 14; 14(10):3576-82. PubMed ID: 22310656
    [Abstract] [Full Text] [Related]

  • 11. Microstructural, optical, and electrical properties of SnO thin films prepared on quartz via a two-step method.
    Liang LY, Liu ZM, Cao HT, Pan XQ.
    ACS Appl Mater Interfaces; 2010 Apr 14; 2(4):1060-5. PubMed ID: 20423126
    [Abstract] [Full Text] [Related]

  • 12. Hydrothermal fabrication of hierarchically macroporous Zn2SnO4 for highly efficient dye-sensitized solar cells.
    Wang YF, Li KN, Xu YF, Rao HS, Su CY, Kuang DB.
    Nanoscale; 2013 Jul 07; 5(13):5940-8. PubMed ID: 23703250
    [Abstract] [Full Text] [Related]

  • 13. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance.
    Zhang J, Bang JH, Tang C, Kamat PV.
    ACS Nano; 2010 Jan 26; 4(1):387-95. PubMed ID: 20000756
    [Abstract] [Full Text] [Related]

  • 14. Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices.
    Miyauchi M, Liu Z, Zhao ZG, Anandan S, Hara K.
    Chem Commun (Camb); 2010 Mar 07; 46(9):1529-31. PubMed ID: 20162171
    [Abstract] [Full Text] [Related]

  • 15. How the nature of triphenylamine-polyene dyes in dye-sensitized solar cells affects the open-circuit voltage and electron lifetimes.
    Marinado T, Nonomura K, Nissfolk J, Karlsson MK, Hagberg DP, Sun L, Mori S, Hagfeldt A.
    Langmuir; 2010 Feb 16; 26(4):2592-8. PubMed ID: 19863060
    [Abstract] [Full Text] [Related]

  • 16. Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells exhibiting unprecedented photocurrent densities.
    Hossain MA, Jennings JR, Koh ZY, Wang Q.
    ACS Nano; 2011 Apr 26; 5(4):3172-81. PubMed ID: 21384799
    [Abstract] [Full Text] [Related]

  • 17. Hydrothermal synthesis of ionic liquid [Bmim]OH-modified TiO2 nanoparticles with enhanced photocatalytic activity under visible light.
    Hu S, Wang A, Li X, Wang Y, Löwe H.
    Chem Asian J; 2010 May 03; 5(5):1171-7. PubMed ID: 20379993
    [Abstract] [Full Text] [Related]

  • 18. Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes.
    Miyashita M, Sunahara K, Nishikawa T, Uemura Y, Koumura N, Hara K, Mori A, Abe T, Suzuki E, Mori S.
    J Am Chem Soc; 2008 Dec 31; 130(52):17874-81. PubMed ID: 19067515
    [Abstract] [Full Text] [Related]

  • 19. Synthesis, characterization, and photocatalytic activity of TiO(2-x)N(x) nanocatalyst.
    Wang YQ, Yu XJ, Sun DZ.
    J Hazard Mater; 2007 Jun 01; 144(1-2):328-33. PubMed ID: 17116365
    [Abstract] [Full Text] [Related]

  • 20. Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells.
    Niinobe D, Makari Y, Kitamura T, Wada Y, Yanagida S.
    J Phys Chem B; 2005 Sep 29; 109(38):17892-900. PubMed ID: 16853295
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.