These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
258 related items for PubMed ID: 1922034
1. GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Flick JS, Johnston M. Mol Cell Biol; 1991 Oct; 11(10):5101-12. PubMed ID: 1922034 [Abstract] [Full Text] [Related]
2. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. Li FN, Johnston M. EMBO J; 1997 Sep 15; 16(18):5629-38. PubMed ID: 9312022 [Abstract] [Full Text] [Related]
3. SCFGrr1-mediated ubiquitination of Gis4 modulates glucose response in yeast. La Rue J, Tokarz S, Lanker S. J Mol Biol; 2005 Jun 17; 349(4):685-98. PubMed ID: 15890364 [Abstract] [Full Text] [Related]
4. The COT2 gene is required for glucose-dependent divalent cation transport in Saccharomyces cerevisiae. Conklin DS, Kung C, Culbertson MR. Mol Cell Biol; 1993 Apr 17; 13(4):2041-9. PubMed ID: 8455597 [Abstract] [Full Text] [Related]
5. Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae. Vallier LG, Coons D, Bisson LF, Carlson M. Genetics; 1994 Apr 17; 136(4):1279-85. PubMed ID: 8013905 [Abstract] [Full Text] [Related]
6. Multicopy FZF1 (SUL1) suppresses the sulfite sensitivity but not the glucose derepression or aberrant cell morphology of a grr1 mutant of Saccharomyces cerevisiae. Avram D, Bakalinsky AT. Genetics; 1996 Oct 17; 144(2):511-21. PubMed ID: 8889516 [Abstract] [Full Text] [Related]
7. Grr1 functions in the ubiquitin pathway in Saccharomyces cerevisiae through association with Skp1. Kishi T, Seno T, Yamao F. Mol Gen Genet; 1998 Jan 17; 257(2):143-8. PubMed ID: 9491072 [Abstract] [Full Text] [Related]
8. Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Flick KM, Spielewoy N, Kalashnikova TI, Guaderrama M, Zhu Q, Chang HC, Wittenberg C. Mol Biol Cell; 2003 Aug 17; 14(8):3230-41. PubMed ID: 12925759 [Abstract] [Full Text] [Related]
9. An essential function of Grr1 for the degradation of Cln2 is to act as a binding core that links Cln2 to Skp1. Kishi T, Yamao F. J Cell Sci; 1998 Dec 18; 111 ( Pt 24)():3655-61. PubMed ID: 9819356 [Abstract] [Full Text] [Related]
10. Overexpression of Arabidopsis thaliana SKP1 homologues in yeast inactivates the Mig1 repressor by destabilising the F-box protein Grr1. Schouten J, de Kam RJ, Fetter K, Hoge JH. Mol Gen Genet; 2000 Mar 18; 263(2):309-19. PubMed ID: 10778750 [Abstract] [Full Text] [Related]
11. F-box protein Grr1 interacts with phosphorylated targets via the cationic surface of its leucine-rich repeat. Hsiung YG, Chang HC, Pellequer JL, La Valle R, Lanker S, Wittenberg C. Mol Cell Biol; 2001 Apr 18; 21(7):2506-20. PubMed ID: 11259599 [Abstract] [Full Text] [Related]
12. Transferable domain in the G(1) cyclin Cln2 sufficient to switch degradation of Sic1 from the E3 ubiquitin ligase SCF(Cdc4) to SCF(Grr1). Berset C, Griac P, Tempel R, La Rue J, Wittenberg C, Lanker S. Mol Cell Biol; 2002 Jul 18; 22(13):4463-76. PubMed ID: 12052857 [Abstract] [Full Text] [Related]
13. Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations. Yin Z, Hatton L, Brown AJ. Mol Microbiol; 2000 Feb 18; 35(3):553-65. PubMed ID: 10672178 [Abstract] [Full Text] [Related]
14. The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis. Butler DK, All O, Goffena J, Loveless T, Wilson T, Toenjes KA. Fungal Genet Biol; 2006 Aug 18; 43(8):573-82. PubMed ID: 16730201 [Abstract] [Full Text] [Related]
15. Regulation and recognition of SCFGrr1 targets in the glucose and amino acid signaling pathways. Spielewoy N, Flick K, Kalashnikova TI, Walker JR, Wittenberg C. Mol Cell Biol; 2004 Oct 18; 24(20):8994-9005. PubMed ID: 15456873 [Abstract] [Full Text] [Related]
16. Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation. Kim YJ, Francisco L, Chen GC, Marcotte E, Chan CS. J Cell Biol; 1994 Dec 18; 127(5):1381-94. PubMed ID: 7962097 [Abstract] [Full Text] [Related]
17. High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Theodoris G, Fong NM, Coons DM, Bisson LF. Genetics; 1994 Aug 18; 137(4):957-66. PubMed ID: 7982576 [Abstract] [Full Text] [Related]
18. Ubiquitin and the SCF(Grr1) ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. Bernard F, André B. FEBS Lett; 2001 May 11; 496(2-3):81-5. PubMed ID: 11356187 [Abstract] [Full Text] [Related]
19. Genetic and molecular characterization of GAL83: its interaction and similarities with other genes involved in glucose repression in Saccharomyces cerevisiae. Erickson JR, Johnston M. Genetics; 1993 Nov 11; 135(3):655-64. PubMed ID: 8293971 [Abstract] [Full Text] [Related]
20. Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae. Williams FE, Trumbly RJ. Mol Cell Biol; 1990 Dec 11; 10(12):6500-11. PubMed ID: 2247069 [Abstract] [Full Text] [Related] Page: [Next] [New Search]