These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1538 related items for PubMed ID: 19222207
1. Protein-targeted gadolinium-based magnetic resonance imaging (MRI) contrast agents: design and mechanism of action. Caravan P. Acc Chem Res; 2009 Jul 21; 42(7):851-62. PubMed ID: 19222207 [Abstract] [Full Text] [Related]
2. GdIII complexes with fast water exchange and high thermodynamic stability: potential building blocks for high-relaxivity MRI contrast agents. Laus S, Ruloff R, Tóth E, Merbach AE. Chemistry; 2003 Aug 04; 9(15):3555-66. PubMed ID: 12898682 [Abstract] [Full Text] [Related]
3. Lanthanide chelates of (bis)-hydroxymethyl-substituted DTTA with potential application as contrast agents in magnetic resonance imaging. Silvério S, Torres S, Martins AF, Martins JA, André JP, Helm L, Prata MI, Santos AC, Geraldes CF. Dalton Trans; 2009 Jun 28; (24):4656-70. PubMed ID: 19513474 [Abstract] [Full Text] [Related]
4. A Gd3+-based magnetic resonance imaging contrast agent sensitive to beta-galactosidase activity utilizing a receptor-induced magnetization enhancement (RIME) phenomenon. Hanaoka K, Kikuchi K, Terai T, Komatsu T, Nagano T. Chemistry; 2008 Jun 28; 14(3):987-95. PubMed ID: 17992679 [Abstract] [Full Text] [Related]
5. MS-325: albumin-targeted contrast agent for MR angiography. Lauffer RB, Parmelee DJ, Dunham SU, Ouellet HS, Dolan RP, Witte S, McMurry TJ, Walovitch RC. Radiology; 1998 May 28; 207(2):529-38. PubMed ID: 9577506 [Abstract] [Full Text] [Related]
6. A benzene-core trinuclear GdIII complex: towards the optimization of relaxivity for MRI contrast agent applications at high magnetic field. Livramento JB, Helm L, Sour A, O'Neil C, Merbach AE, Tóth E. Dalton Trans; 2008 Mar 07; (9):1195-202. PubMed ID: 18283380 [Abstract] [Full Text] [Related]
8. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Aime S, Castelli DD, Crich SG, Gianolio E, Terreno E. Acc Chem Res; 2009 Jul 21; 42(7):822-31. PubMed ID: 19534516 [Abstract] [Full Text] [Related]
9. High-relaxivity MRI contrast agents: where coordination chemistry meets medical imaging. Werner EJ, Datta A, Jocher CJ, Raymond KN. Angew Chem Int Ed Engl; 2008 Jul 21; 47(45):8568-80. PubMed ID: 18825758 [Abstract] [Full Text] [Related]
10. Synthesis, characterization, and pharmacokinetic evaluation of a potential MRI contrast agent containing two paramagnetic centers with albumin binding affinity. Parac-Vogt TN, Kimpe K, Laurent S, Vander Elst L, Burtea C, Chen F, Muller RN, Ni Y, Verbruggen A, Binnemans K. Chemistry; 2005 May 06; 11(10):3077-86. PubMed ID: 15776492 [Abstract] [Full Text] [Related]
11. Brain tumor enhancement in magnetic resonance imaging at 3 tesla: intraindividual comparison of two high relaxivity macromolecular contrast media with a standard extracellular gd-chelate in a rat brain tumor model. Fries P, Runge VM, Bücker A, Schürholz H, Reith W, Robert P, Jackson C, Lanz T, Schneider G. Invest Radiol; 2009 Apr 06; 44(4):200-6. PubMed ID: 19300099 [Abstract] [Full Text] [Related]
12. Dendrimeric gadolinium chelate with fast water exchange and high relaxivity at high magnetic field strength. Pierre VC, Botta M, Raymond KN. J Am Chem Soc; 2005 Jan 19; 127(2):504-5. PubMed ID: 15643857 [Abstract] [Full Text] [Related]
16. Coupling fast water exchange to slow molecular tumbling in Gd3+ chelates: why faster is not always better. Avedano S, Botta M, Haigh JS, Longo DL, Woods M. Inorg Chem; 2013 Aug 05; 52(15):8436-50. PubMed ID: 23841587 [Abstract] [Full Text] [Related]