These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


257 related items for PubMed ID: 19223214

  • 21. Molecular dynamics simulations of the hyperthermophilic protein sac7d from Sulfolobus acidocaldarius: contribution of salt bridges to thermostability.
    de Bakker PI, Hünenberger PH, McCammon JA.
    J Mol Biol; 1999 Jan 29; 285(4):1811-30. PubMed ID: 9917414
    [Abstract] [Full Text] [Related]

  • 22. Protein folding in mode space: a collective coordinate approach to structure prediction.
    Abseher R, Nilges M.
    Proteins; 2002 Nov 15; 49(3):365-77. PubMed ID: 12360526
    [Abstract] [Full Text] [Related]

  • 23. Cold adaptation of enzyme reaction rates.
    Bjelic S, Brandsdal BO, Aqvist J.
    Biochemistry; 2008 Sep 23; 47(38):10049-57. PubMed ID: 18759500
    [Abstract] [Full Text] [Related]

  • 24. Structural adaptation to low temperatures--analysis of the subunit interface of oligomeric psychrophilic enzymes.
    Tronelli D, Maugini E, Bossa F, Pascarella S.
    FEBS J; 2007 Sep 23; 274(17):4595-608. PubMed ID: 17697122
    [Abstract] [Full Text] [Related]

  • 25. Protein flexibility: multiple molecular dynamics simulations of insulin chain B.
    Legge FS, Budi A, Treutlein H, Yarovsky I.
    Biophys Chem; 2006 Jan 20; 119(2):146-57. PubMed ID: 16129550
    [Abstract] [Full Text] [Related]

  • 26. Effects of environment on the structure of Pyrococcus furiosus rubredoxin: a molecular dynamics study.
    Ergenekan CE, Tan ML, Ichiye T.
    Proteins; 2005 Dec 01; 61(4):823-8. PubMed ID: 16245319
    [Abstract] [Full Text] [Related]

  • 27. Transition state of a SH3 domain detected with principle component analysis and a charge-neutralized all-atom protein model.
    Mitomo D, Nakamura HK, Ikeda K, Yamagishi A, Higo J.
    Proteins; 2006 Sep 01; 64(4):883-94. PubMed ID: 16807919
    [Abstract] [Full Text] [Related]

  • 28. Protein folding and unfolding by all-atom molecular dynamics simulations.
    Lei H, Duan Y.
    Methods Mol Biol; 2008 Sep 01; 443():277-95. PubMed ID: 18446293
    [Abstract] [Full Text] [Related]

  • 29. Conformational states and folding pathways of peptides revealed by principal-independent component analyses.
    Nguyen PH.
    Proteins; 2007 May 15; 67(3):579-92. PubMed ID: 17348012
    [Abstract] [Full Text] [Related]

  • 30. Simulated annealing coupled replica exchange molecular dynamics--an efficient conformational sampling method.
    Kannan S, Zacharias M.
    J Struct Biol; 2009 Jun 15; 166(3):288-94. PubMed ID: 19272454
    [Abstract] [Full Text] [Related]

  • 31. Low-temperature protein dynamics: a simulation analysis of interprotein vibrations and the boson peak at 150 k.
    Kurkal-Siebert V, Smith JC.
    J Am Chem Soc; 2006 Feb 22; 128(7):2356-64. PubMed ID: 16478191
    [Abstract] [Full Text] [Related]

  • 32. Thermal stability and unfolding pathways of hyperthermophilic and mesophilic periplasmic binding proteins studied by molecular dynamics simulation.
    Chen L, Li X, Wang R, Fang F, Yang W, Kan W.
    J Biomol Struct Dyn; 2016 Jul 22; 34(7):1576-89. PubMed ID: 26292713
    [Abstract] [Full Text] [Related]

  • 33. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms.
    Glyakina AV, Garbuzynskiy SO, Lobanov MY, Galzitskaya OV.
    Bioinformatics; 2007 Sep 01; 23(17):2231-8. PubMed ID: 17599925
    [Abstract] [Full Text] [Related]

  • 34. Do homologous thermophilic-mesophilic proteins exhibit similar structures and dynamics at optimal growth temperatures? A molecular dynamics simulation study.
    Basu S, Sen S.
    J Chem Inf Model; 2013 Feb 25; 53(2):423-34. PubMed ID: 23267663
    [Abstract] [Full Text] [Related]

  • 35. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.
    Papaleo E, Mereghetti P, Fantucci P, Grandori R, De Gioia L.
    J Mol Graph Model; 2009 Feb 25; 27(8):889-99. PubMed ID: 19264523
    [Abstract] [Full Text] [Related]

  • 36. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN, Minoux H, Brooks CL.
    Proteins; 2004 Oct 01; 57(1):128-41. PubMed ID: 15326599
    [Abstract] [Full Text] [Related]

  • 37. Dynamics and cooperativity of Trp-cage folding.
    Hu Z, Tang Y, Wang H, Zhang X, Lei M.
    Arch Biochem Biophys; 2008 Jul 15; 475(2):140-7. PubMed ID: 18474213
    [Abstract] [Full Text] [Related]

  • 38. Can principal components yield a dimension reduced description of protein dynamics on long time scales?
    Lange OF, Grubmüller H.
    J Phys Chem B; 2006 Nov 16; 110(45):22842-52. PubMed ID: 17092036
    [Abstract] [Full Text] [Related]

  • 39. Molecular cold-adaptation: comparative analysis of two homologous families of psychrophilic and mesophilic signal proteins of the protozoan ciliate, Euplotes.
    Alimenti C, Vallesi A, Pedrini B, Wüthrich K, Luporini P.
    IUBMB Life; 2009 Aug 16; 61(8):838-45. PubMed ID: 19621350
    [Abstract] [Full Text] [Related]

  • 40. Mechanical unfolding of proteins L and G with constant force: similarities and differences.
    Glyakina AV, Balabaev NK, Galzitskaya OV.
    J Chem Phys; 2009 Jul 28; 131(4):045102. PubMed ID: 19655923
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.