These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
358 related items for PubMed ID: 19226457
1. Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood. Iida S, Kuni-Kamochi R, Mori K, Misaka H, Inoue M, Okazaki A, Shitara K, Satoh M. BMC Cancer; 2009 Feb 18; 9():58. PubMed ID: 19226457 [Abstract] [Full Text] [Related]
4. Increased in vivo effector function of human IgG4 isotype antibodies through afucosylation. Gong Q, Hazen M, Marshall B, Crowell SR, Ou Q, Wong AW, Phung W, Vernes JM, Meng YG, Tejada M, Andersen D, Kelley RF. MAbs; 2016 Feb 18; 8(6):1098-106. PubMed ID: 27216702 [Abstract] [Full Text] [Related]
5. Importance of the Side Chain at Position 296 of Antibody Fc in Interactions with FcγRIIIa and Other Fcγ Receptors. Isoda Y, Yagi H, Satoh T, Shibata-Koyama M, Masuda K, Satoh M, Kato K, Iida S. PLoS One; 2015 Feb 18; 10(10):e0140120. PubMed ID: 26444434 [Abstract] [Full Text] [Related]
7. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Niwa R, Hatanaka S, Shoji-Hosaka E, Sakurada M, Kobayashi Y, Uehara A, Yokoi H, Nakamura K, Shitara K. Clin Cancer Res; 2004 Sep 15; 10(18 Pt 1):6248-55. PubMed ID: 15448014 [Abstract] [Full Text] [Related]
8. FcγRIIIa chromatography to enrich a-fucosylated glycoforms and assess the potency of glycoengineered therapeutic antibodies. Freimoser-Grundschober A, Rueger P, Fingas F, Sondermann P, Herter S, Schlothauer T, Umana P, Neumann C. J Chromatogr A; 2020 Jan 11; 1610():460554. PubMed ID: 31597603 [Abstract] [Full Text] [Related]
11. Enhanced binding affinity for FcgammaRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity. Masuda K, Kubota T, Kaneko E, Iida S, Wakitani M, Kobayashi-Natsume Y, Kubota A, Shitara K, Nakamura K. Mol Immunol; 2007 May 11; 44(12):3122-31. PubMed ID: 17379311 [Abstract] [Full Text] [Related]
13. Development of a robust reporter-based ADCC assay with frozen, thaw-and-use cells to measure Fc effector function of therapeutic antibodies. Cheng ZJ, Garvin D, Paguio A, Moravec R, Engel L, Fan F, Surowy T. J Immunol Methods; 2014 Dec 01; 414():69-81. PubMed ID: 25086226 [Abstract] [Full Text] [Related]
15. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. Niwa R, Natsume A, Uehara A, Wakitani M, Iida S, Uchida K, Satoh M, Shitara K. J Immunol Methods; 2005 Nov 30; 306(1-2):151-60. PubMed ID: 16219319 [Abstract] [Full Text] [Related]
17. B-lymphoma cells escape rituximab-triggered elimination by NK cells through increased HLA class I expression. Borgerding A, Hasenkamp J, Engelke M, Burkhart N, Trümper L, Wienands J, Glass B. Exp Hematol; 2010 Mar 30; 38(3):213-21. PubMed ID: 20056126 [Abstract] [Full Text] [Related]
19. [Potelligent antibodies as next generation therapeutic antibodies]. Shitara K. Yakugaku Zasshi; 2009 Jan 30; 129(1):3-9. PubMed ID: 19122430 [Abstract] [Full Text] [Related]
20. Within peripheral blood mononuclear cells, antibody-dependent cellular cytotoxicity of rituximab-opsonized Daudi cells is promoted by NK cells and inhibited by monocytes due to shaving. Beum PV, Lindorfer MA, Taylor RP. J Immunol; 2008 Aug 15; 181(4):2916-24. PubMed ID: 18684983 [Abstract] [Full Text] [Related] Page: [Next] [New Search]