These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
101 related items for PubMed ID: 19229526
1. An XPS analytical approach for elucidating the microbially mediated enargite oxidative dissolution. Fantauzzi M, Rossi G, Elsener B, Loi G, Atzei D, Rossi A. Anal Bioanal Chem; 2009 Apr; 393(8):1931-41. PubMed ID: 19229526 [Abstract] [Full Text] [Related]
2. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques. Fantauzzi M, Licheri C, Atzei D, Loi G, Elsener B, Rossi G, Rossi A. Anal Bioanal Chem; 2011 Oct; 401(7):2237-48. PubMed ID: 21847529 [Abstract] [Full Text] [Related]
3. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans. Makita M, Esperón M, Pereyra B, López A, Orrantia E. BMC Biotechnol; 2004 Oct 13; 4():22. PubMed ID: 15482595 [Abstract] [Full Text] [Related]
4. Arsenic release from the abiotic oxidation of arsenopyrite under the impact of waterborne H2O2: a SEM and XPS study. Ma Y, Qin Y, Zheng B, Zhang L, Zhao Y. Environ Sci Pollut Res Int; 2016 Jan 13; 23(2):1381-90. PubMed ID: 26362642 [Abstract] [Full Text] [Related]
5. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans. Kocaman AT, Cemek M, Edwards KJ. Can J Microbiol; 2016 Aug 13; 62(8):629-42. PubMed ID: 27332502 [Abstract] [Full Text] [Related]
6. Novel insights into the kinetics and mechanism of arsenopyrite bio-dissolution enhanced by pyrite. Zhang DR, Zhang RY, Zhu XT, Kong WB, Cao C, Zheng L, Pakostova E. J Hazard Mater; 2024 May 15; 470():134193. PubMed ID: 38569341 [Abstract] [Full Text] [Related]
7. Changes in biooxidation mechanism and transient biofilm characteristics by As(V) during arsenopyrite colonization with Acidithiobacillus thiooxidans. Ramírez-Aldaba H, Vázquez-Arenas J, Sosa-Rodríguez FS, Valdez-Pérez D, Ruiz-Baca E, Trejo-Córdoba G, Escobedo-Bretado MA, Lartundo-Rojas L, Ponce-Peña P, Lara RH. J Ind Microbiol Biotechnol; 2018 Aug 15; 45(8):669-680. PubMed ID: 29858724 [Abstract] [Full Text] [Related]
8. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms. Deng S, Gu G, Wu Z, Xu X. Chemosphere; 2017 Oct 15; 185():403-411. PubMed ID: 28710989 [Abstract] [Full Text] [Related]
9. (Bio)dissolution of arsenopyrite coupled with multiple proportions of pyrite: Emphasis on the mobilization and existential state of arsenic. Tang A, Wang J, Zhang Y, Hong M, Liu Y, Yang B. Chemosphere; 2023 Apr 15; 321():138128. PubMed ID: 36775027 [Abstract] [Full Text] [Related]
10. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic. Ramírez-Aldaba H, Valles OP, Vazquez-Arenas J, Rojas-Contreras JA, Valdez-Pérez D, Ruiz-Baca E, Meraz-Rodríguez M, Sosa-Rodríguez FS, Rodríguez ÁG, Lara RH. Sci Total Environ; 2016 Oct 01; 566-567():1106-1119. PubMed ID: 27312277 [Abstract] [Full Text] [Related]
11. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies. Basu A, Schreiber ME. J Hazard Mater; 2013 Nov 15; 262():896-904. PubMed ID: 23312782 [Abstract] [Full Text] [Related]
12. Suppression of arsenopyrite surface oxidation by sol-gel coatings. Khummalai N, Boonamnuayvitaya V. J Biosci Bioeng; 2005 Mar 15; 99(3):277-84. PubMed ID: 16233789 [Abstract] [Full Text] [Related]
13. Dissolution of realgar by Acidithiobacillus ferrooxidans in the presence and absence of zerovalent iron: Implications for remediation of iron-deficient realgar tailings. Fan L, Zhao F, Liu J, Hudson-Edwards KA. Chemosphere; 2018 Oct 15; 209():381-391. PubMed ID: 29935467 [Abstract] [Full Text] [Related]
14. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization. Zhang DR, Chen HR, Xia JL, Nie ZY, Fan XL, Liu HC, Zheng L, Zhang LJ, Yang HY. J Hazard Mater; 2020 Feb 15; 384():121359. PubMed ID: 31635821 [Abstract] [Full Text] [Related]
15. Surface alteration of realgar (As(4)S(4)) by Acidithiobacillus ferrooxidans. Chen P, Yan L, Wang Q, Li Y, Li H. Int Microbiol; 2012 Mar 15; 15(1):9-15. PubMed ID: 22837148 [Abstract] [Full Text] [Related]
16. Processing of arsenopyritic gold concentrates by partial bio-oxidation followed by bioreduction. Hol A, van der Weijden RD, Van Weert G, Kondos P, Buisman CJ. Environ Sci Technol; 2011 Aug 01; 45(15):6316-21. PubMed ID: 21707056 [Abstract] [Full Text] [Related]
17. New insights into the controversy of reactive mineral-controlled arsenopyrite dissolution and arsenic release. Qu H, Ding K, Ao M, Ye Z, Liu T, Hu Z, Cao Y, Morel JL, Baker AJM, Tang Y, Qiu R, Wang S. Water Res; 2024 Sep 15; 262():122051. PubMed ID: 39024668 [Abstract] [Full Text] [Related]
18. Thioarsenate formation upon dissolution of orpiment and arsenopyrite. Suess E, Planer-Friedrich B. Chemosphere; 2012 Nov 15; 89(11):1390-8. PubMed ID: 22771176 [Abstract] [Full Text] [Related]
19. Catalytic effect of Ag⁺ on arsenic bioleaching from orpiment (As₂S₃) in batch tests with Acidithiobacillus ferrooxidans and Sulfobacillus sibiricus. Zhang G, Chao X, Guo P, Cao J, Yang C. J Hazard Mater; 2015 Nov 15; 283():117-22. PubMed ID: 25265593 [Abstract] [Full Text] [Related]
20. Arsenic mineral dissolution and possible mobilization in mineral-microbe-groundwater environment. Islam AB, Maity JP, Bundschuh J, Chen CY, Bhowmik BK, Tazaki K. J Hazard Mater; 2013 Nov 15; 262():989-96. PubMed ID: 22954601 [Abstract] [Full Text] [Related] Page: [Next] [New Search]