These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


273 related items for PubMed ID: 19230976

  • 21. cDNA cloning and characterization of vanadium-dependent bromoperoxidases from the red alga Laurencia nipponica.
    Kaneko K, Washio K, Umezawa T, Matsuda F, Morikawa M, Okino T.
    Biosci Biotechnol Biochem; 2014; 78(8):1310-9. PubMed ID: 25130731
    [Abstract] [Full Text] [Related]

  • 22. Structure of PBP-A from Thermosynechococcus elongatus, a penicillin-binding protein closely related to class A beta-lactamases.
    Urbach C, Evrard C, Pudzaitis V, Fastrez J, Soumillion P, Declercq JP.
    J Mol Biol; 2009 Feb 13; 386(1):109-20. PubMed ID: 19100272
    [Abstract] [Full Text] [Related]

  • 23. Crystal structure of inhibitor-bound P450BM-3 reveals open conformation of substrate access channel.
    Haines DC, Chen B, Tomchick DR, Bondlela M, Hegde A, Machius M, Peterson JA.
    Biochemistry; 2008 Mar 25; 47(12):3662-70. PubMed ID: 18298086
    [Abstract] [Full Text] [Related]

  • 24. Vanadate activation of bromoperoxidase from Corallina officinalis.
    Yu H, Whittaker JW.
    Biochem Biophys Res Commun; 1989 Apr 14; 160(1):87-92. PubMed ID: 2540754
    [Abstract] [Full Text] [Related]

  • 25. Active site structure and catalytic mechanisms of human peroxidases.
    Furtmüller PG, Zederbauer M, Jantschko W, Helm J, Bogner M, Jakopitsch C, Obinger C.
    Arch Biochem Biophys; 2006 Jan 15; 445(2):199-213. PubMed ID: 16288970
    [Abstract] [Full Text] [Related]

  • 26. Crystal structure and mechanism of tryptophan 2,3-dioxygenase, a heme enzyme involved in tryptophan catabolism and in quinolinate biosynthesis.
    Zhang Y, Kang SA, Mukherjee T, Bale S, Crane BR, Begley TP, Ealick SE.
    Biochemistry; 2007 Jan 09; 46(1):145-55. PubMed ID: 17198384
    [Abstract] [Full Text] [Related]

  • 27. Novel structural features in the GMC family of oxidoreductases revealed by the crystal structure of fungal aryl-alcohol oxidase.
    Fernández IS, Ruíz-Dueñas FJ, Santillana E, Ferreira P, Martínez MJ, Martínez AT, Romero A.
    Acta Crystallogr D Biol Crystallogr; 2009 Nov 09; 65(Pt 11):1196-205. PubMed ID: 19923715
    [Abstract] [Full Text] [Related]

  • 28. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K, Kuwasaki A, Shima K, Matsumoto T, Suzuki T.
    Int J Biol Macromol; 2009 Jun 01; 44(5):413-8. PubMed ID: 19428475
    [Abstract] [Full Text] [Related]

  • 29. High-resolution XANES studies on vanadium-containing haloperoxidase: pH-dependence and substrate binding.
    Küsthardt U, Hedman B, Hodgson KO, Hahn R, Vilter H.
    FEBS Lett; 1993 Aug 23; 329(1-2):5-8. PubMed ID: 8354407
    [Abstract] [Full Text] [Related]

  • 30. Specificity versus catalytic potency: The role of threonine 44 in Escherichia coli dihydrodipicolinate synthase mediated catalysis.
    Dobson RC, Perugini MA, Jameson GB, Gerrard JA.
    Biochimie; 2009 Aug 23; 91(8):1036-44. PubMed ID: 19505526
    [Abstract] [Full Text] [Related]

  • 31. Vanadium haloperoxidase-catalyzed bromination and cyclization of terpenes.
    Carter-Franklin JN, Parrish JD, Tschirret-Guth RA, Little RD, Butler A.
    J Am Chem Soc; 2003 Apr 02; 125(13):3688-9. PubMed ID: 12656585
    [Abstract] [Full Text] [Related]

  • 32. Substrate binding to vanadate-dependent bromoperoxidase from Ascophyllum nodosum: a vanadium K-edge XAS approach.
    Christmann U, Dau H, Haumann M, Kiss E, Liebisch P, Rehder D, Santoni G, Schulzke C.
    Dalton Trans; 2004 Aug 21; (16):2534-40. PubMed ID: 15303169
    [Abstract] [Full Text] [Related]

  • 33. Oxidation of aniline to nitrobenzene by nonheme bromoperoxidase.
    Itoh N, Morinaga N, Kouzai T.
    Biochem Mol Biol Int; 1993 Mar 21; 29(4):785-91. PubMed ID: 8490583
    [Abstract] [Full Text] [Related]

  • 34. Insight into the catalytic mechanism of vanadium haloperoxidases. DFT investigation of vanadium cofactor reactivity.
    Zampella G, Fantucci P, Pecoraro VL, De Gioia L.
    Inorg Chem; 2006 Sep 04; 45(18):7133-43. PubMed ID: 16933914
    [Abstract] [Full Text] [Related]

  • 35. Quantum mechanical models of the resting state of the vanadium-dependent haloperoxidase.
    Zampella G, Kravitz JY, Webster CE, Fantucci P, Hall MB, Carlson HA, Pecoraro VL, De Luca L.
    Inorg Chem; 2004 Jul 12; 43(14):4127-36. PubMed ID: 15236524
    [Abstract] [Full Text] [Related]

  • 36. Expression of the vanadium-dependent bromoperoxidase gene from a marine macro-alga Corallina pilulifera in Saccharomyces cerevisiae and characterization of the recombinant enzyme.
    Ohshiro T, Hemrika W, Aibara T, Wever R, Izumi Y.
    Phytochemistry; 2002 Jul 12; 60(6):595-601. PubMed ID: 12126706
    [Abstract] [Full Text] [Related]

  • 37. Vanadium-dependent haloperoxidases.
    Vilter H.
    Met Ions Biol Syst; 1995 Jul 12; 31():325-62. PubMed ID: 8564812
    [No Abstract] [Full Text] [Related]

  • 38. Insights into the alkyl peroxide reduction pathway of Xanthomonas campestris bacterioferritin comigratory protein from the trapped intermediate-ligand complex structures.
    Liao SJ, Yang CY, Chin KH, Wang AH, Chou SH.
    J Mol Biol; 2009 Jul 31; 390(5):951-66. PubMed ID: 19477183
    [Abstract] [Full Text] [Related]

  • 39. The role of group bulkiness in the catalytic activity of psychrophile cold-active protein tyrosine phosphatase.
    Tsuruta H, Mikami B, Yamamoto C, Yamagata H.
    FEBS J; 2008 Sep 31; 275(17):4317-28. PubMed ID: 18647345
    [Abstract] [Full Text] [Related]

  • 40. Roles of conserved basic amino acid residues and activation mechanism of the hyperthermophilic aspartate racemase at high temperature.
    Yoshida T, Seko T, Okada O, Iwata K, Liu L, Miki K, Yohda M.
    Proteins; 2006 Aug 01; 64(2):502-12. PubMed ID: 16705641
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 14.