These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


204 related items for PubMed ID: 19232351

  • 1. Effect of Bacillus thuringiensis naturally colonising Brassica campestris var. chinensis leaves on neonate larvae of Pieris brassicae.
    Prabhakar A, Bishop AH.
    J Invertebr Pathol; 2009 Mar; 100(3):193-4. PubMed ID: 19232351
    [Abstract] [Full Text] [Related]

  • 2. The ecology of Bacillus thuringiensis on the Phylloplane: colonization from soil, plasmid transfer, and interaction with larvae of Pieris brassicae.
    Bizzarri MF, Bishop AH.
    Microb Ecol; 2008 Jul; 56(1):133-9. PubMed ID: 17973155
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. A recombinant immunosuppressive protein from Pimpla hypochondriaca (rVPr1) increases the susceptibility of Lacanobia oleracea and Mamestra brassicae larvae to Bacillus thuringiensis.
    Richards EH, Paulina Dani M.
    J Invertebr Pathol; 2010 May; 104(1):51-7. PubMed ID: 20123105
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Immigration of Bacillus thuringiensis to bean leaves from soil inoculum or distal plant parts.
    Maduell P, Armengol G, Llagostera M, Lindow S, Orduz S.
    J Appl Microbiol; 2007 Dec; 103(6):2593-600. PubMed ID: 18045443
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. [Bacillus thuringiensis: general aspects. An approach to its use in the biological control of lepidopteran insects behaving as agricultural pests].
    Sauka DH, Benintende GB.
    Rev Argent Microbiol; 2008 Dec; 40(2):124-40. PubMed ID: 18705497
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Potentiation of insecticidal activity of Bacillus thuringiensis subsp. kurstaki HD-1 by proteinase inhibitors in the American bollworm, Helicoverpa armigera (Hübner).
    Gujar T, Kalia V, Kumari A, Prasad TV.
    Indian J Exp Biol; 2004 Feb; 42(2):157-63. PubMed ID: 15282948
    [Abstract] [Full Text] [Related]

  • 16. The mutation R(423)S in the Bacillus thuringiensis hybrid toxin CryAAC slightly increases toxicity for Mamestra brassicae L.
    Ayra-Pardo C, Davis P, Ellar DJ.
    J Invertebr Pathol; 2007 May; 95(1):41-7. PubMed ID: 17306294
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Translocation and insecticidal activity of Bacillus thuringiensis living inside of plants.
    Monnerat RG, Soares CM, Capdeville G, Jones G, Martins ES, Praça L, Cordeiro BA, Braz SV, dos Santos RC, Berry C.
    Microb Biotechnol; 2009 Jul; 2(4):512-20. PubMed ID: 21255282
    [Abstract] [Full Text] [Related]

  • 19. Microbial ecology of Bacillus thuringiensis: fecal populations recovered from wildlife in Korea.
    Lee DH, Cha IH, Woo DS, Ohba M.
    Can J Microbiol; 2003 Jul; 49(7):465-71. PubMed ID: 14569287
    [Abstract] [Full Text] [Related]

  • 20. [The effects of Bacillus thuringiensis on the greater wax moth, Galleria mellonella (L.) (Lepidoptera: Galleriidae)].
    Boşgelmez A, Cakmakçi L, Gürkan B, Gürkan F, Cetinkaya G.
    Mikrobiyol Bul; 1983 Oct; 17(4):233-42. PubMed ID: 6669083
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.