These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 19236980

  • 1. Kinematic and electromyographic analysis of wheelchair propulsion on ramps of different slopes for young men with paraplegia.
    Chow JW, Millikan TA, Carlton LG, Chae WS, Lim YT, Morse MI.
    Arch Phys Med Rehabil; 2009 Feb; 90(2):271-8. PubMed ID: 19236980
    [Abstract] [Full Text] [Related]

  • 2. Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach.
    Dubowsky SR, Sisto SA, Langrana NA.
    J Biomech Eng; 2009 Feb; 131(2):021015. PubMed ID: 19102574
    [Abstract] [Full Text] [Related]

  • 3. Comparison of shoulder muscle electromyographic activity during standard manual wheelchair and push-rim activated power assisted wheelchair propulsion in persons with complete tetraplegia.
    Lighthall-Haubert L, Requejo PS, Mulroy SJ, Newsam CJ, Bontrager E, Gronley JK, Perry J.
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1904-15. PubMed ID: 19887216
    [Abstract] [Full Text] [Related]

  • 4. Consequences of a cross slope on wheelchair handrim biomechanics.
    Richter WM, Rodriguez R, Woods KR, Axelson PW.
    Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679
    [Abstract] [Full Text] [Related]

  • 5. Trunk muscle activity during wheelchair ramp ascent and the influence of a geared wheel on the demands of postural control.
    Howarth SJ, Polgar JM, Dickerson CR, Callaghan JP.
    Arch Phys Med Rehabil; 2010 Mar; 91(3):436-42. PubMed ID: 20298836
    [Abstract] [Full Text] [Related]

  • 6. Shoulder biomechanics during the push phase of wheelchair propulsion: a multisite study of persons with paraplegia.
    Collinger JL, Boninger ML, Koontz AM, Price R, Sisto SA, Tolerico ML, Cooper RA.
    Arch Phys Med Rehabil; 2008 Apr; 89(4):667-76. PubMed ID: 18373997
    [Abstract] [Full Text] [Related]

  • 7. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds.
    Richter WM, Rodriguez R, Woods KR, Axelson PW.
    Arch Phys Med Rehabil; 2007 Jan; 88(1):81-7. PubMed ID: 17207680
    [Abstract] [Full Text] [Related]

  • 8. Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study.
    Mulroy SJ, Farrokhi S, Newsam CJ, Perry J.
    Arch Phys Med Rehabil; 2004 Jun; 85(6):925-34. PubMed ID: 15179646
    [Abstract] [Full Text] [Related]

  • 9. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.
    Vanlandewijck YC, Spaepen AJ, Lysens RJ.
    Med Sci Sports Exerc; 1994 Nov; 26(11):1373-81. PubMed ID: 7837958
    [Abstract] [Full Text] [Related]

  • 10. The effect of visual biofeedback on the propulsion effectiveness of experienced wheelchair users.
    Kotajarvi BR, Basford JR, An KN, Morrow DA, Kaufman KR.
    Arch Phys Med Rehabil; 2006 Apr; 87(4):510-5. PubMed ID: 16571390
    [Abstract] [Full Text] [Related]

  • 11. Effect of resistance load on biomechanical characteristics of racing wheelchair propulsion over a roller system.
    Chow JW, Millikan TA, Carlton LG, Chae W, Morse MI.
    J Biomech; 2000 May; 33(5):601-8. PubMed ID: 10708781
    [Abstract] [Full Text] [Related]

  • 12. Kinematic analysis of the 100-m wheelchair race.
    Chow JW, Chae WS.
    J Biomech; 2007 May; 40(11):2564-8. PubMed ID: 17270191
    [Abstract] [Full Text] [Related]

  • 13. Manual wheelchair propulsion on ramp slopes encountered when boarding public transit buses.
    Bertocci G, Smalley C, Page A, Digiovine C.
    Disabil Rehabil Assist Technol; 2019 Aug; 14(6):561-565. PubMed ID: 29856235
    [Abstract] [Full Text] [Related]

  • 14. Wheelchair propulsion technique at different speeds.
    Veeger HE, van der Woude LH, Rozendal RH.
    Scand J Rehabil Med; 1989 Aug; 21(4):197-203. PubMed ID: 2631194
    [Abstract] [Full Text] [Related]

  • 15. Reduced finger and wrist flexor activity during propulsion with a new flexible handrim.
    Richter WM, Rodriguez R, Woods KR, Karpinski AP, Axelson PW.
    Arch Phys Med Rehabil; 2006 Dec; 87(12):1643-7. PubMed ID: 17141646
    [Abstract] [Full Text] [Related]

  • 16. Biomechanical comparison of two racing wheelchair propulsion techniques.
    Chow JW, Millikan TA, Carlton LG, Morse MI, Chae WS.
    Med Sci Sports Exerc; 2001 Mar; 33(3):476-84. PubMed ID: 11252077
    [Abstract] [Full Text] [Related]

  • 17. Electromyographic activity of shoulder muscles during wheelchair propulsion by paraplegic persons.
    Mulroy SJ, Gronley JK, Newsam CJ, Perry J.
    Arch Phys Med Rehabil; 1996 Feb; 77(2):187-93. PubMed ID: 8607745
    [Abstract] [Full Text] [Related]

  • 18. The influence of verbal training and visual feedback on manual wheelchair propulsion.
    DeGroot KK, Hollingsworth HH, Morgan KA, Morris CL, Gray DB.
    Disabil Rehabil Assist Technol; 2009 Mar; 4(2):86-94. PubMed ID: 19253097
    [Abstract] [Full Text] [Related]

  • 19. Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact.
    Kwarciak AM, Sisto SA, Yarossi M, Price R, Komaroff E, Boninger ML.
    Arch Phys Med Rehabil; 2009 Jan; 90(1):20-6. PubMed ID: 19154825
    [Abstract] [Full Text] [Related]

  • 20. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion.
    Koontz AM, Roche BM, Collinger JL, Cooper RA, Boninger ML.
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1916-23. PubMed ID: 19887217
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.