These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 19239494

  • 1. Reduction of xylose to xylitol catalyzed by glucose-fructose oxidoreductase from Zymomonas mobilis.
    Zhang X, Chen G, Liu W.
    FEMS Microbiol Lett; 2009 Apr; 293(2):214-9. PubMed ID: 19239494
    [Abstract] [Full Text] [Related]

  • 2. A novel aldose-aldose oxidoreductase for co-production of D-xylonate and xylitol from D-xylose with Saccharomyces cerevisiae.
    Wiebe MG, Nygård Y, Oja M, Andberg M, Ruohonen L, Koivula A, Penttilä M, Toivari M.
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9439-47. PubMed ID: 26264136
    [Abstract] [Full Text] [Related]

  • 3. Production of lactobionic acid and sorbitol from lactose/fructose substrate using GFOR/GL enzymes from Zymomonas mobilis cells: a kinetic study.
    Pedruzzi I, da Silva EA, Rodrigues AE.
    Enzyme Microb Technol; 2011 Jul 10; 49(2):183-91. PubMed ID: 22112407
    [Abstract] [Full Text] [Related]

  • 4. Discovery and characterization of a xylose reductase from Zymomonas mobilis ZM4.
    Agrawal M, Chen RR.
    Biotechnol Lett; 2011 Nov 10; 33(11):2127-33. PubMed ID: 21720846
    [Abstract] [Full Text] [Related]

  • 5. Biotransformation of pineapple juice sugars into dietetic derivatives by using a cell free oxidoreductase from Zymomonas mobilis together with commercial invertase.
    Aziz MG, Michlmayr H, Kulbe KD, Del Hierro AM.
    Enzyme Microb Technol; 2011 Jan 05; 48(1):85-91. PubMed ID: 22112775
    [Abstract] [Full Text] [Related]

  • 6. The substitution of a single amino acid residue (Ser-116 --> Asp) alters NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis into a glucose dehydrogenase with dual coenzyme specificity.
    Wiegert T, Sahm H, Sprenger GA.
    J Biol Chem; 1997 May 16; 272(20):13126-33. PubMed ID: 9148926
    [Abstract] [Full Text] [Related]

  • 7. Adaptation yields a highly efficient xylose-fermenting Zymomonas mobilis strain.
    Agrawal M, Mao Z, Chen RR.
    Biotechnol Bioeng; 2011 Apr 16; 108(4):777-85. PubMed ID: 21404252
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Sorbitol production using recombinant Zymomonas mobilis strain.
    Liu C, Dong H, Zhong J, Ryu DD, Bao J.
    J Biotechnol; 2010 Jul 20; 148(2-3):105-12. PubMed ID: 20438775
    [Abstract] [Full Text] [Related]

  • 11. Engineering efficient xylose metabolism into an acetic acid-tolerant Zymomonas mobilis strain by introducing adaptation-induced mutations.
    Agrawal M, Wang Y, Chen RR.
    Biotechnol Lett; 2012 Oct 20; 34(10):1825-32. PubMed ID: 22669340
    [Abstract] [Full Text] [Related]

  • 12. Expression of the Zymomonas mobilis gfo gene or NADP-containing glucose:fructose oxidoreductase (GFOR) in Escherichia coli. Formation of enzymatically active preGFOR but lack of processing into a stable periplasmic protein.
    Wiegert T, Sahm H, Sprenger GA.
    Eur J Biochem; 1997 Feb 15; 244(1):107-12. PubMed ID: 9063452
    [Abstract] [Full Text] [Related]

  • 13. Crystal structures of the precursor form of glucose-fructose oxidoreductase from Zymomonas mobilis and its complexes with bound ligands.
    Nurizzo D, Halbig D, Sprenger GA, Baker EN.
    Biochemistry; 2001 Nov 20; 40(46):13857-67. PubMed ID: 11705375
    [Abstract] [Full Text] [Related]

  • 14. Crystal structure of a truncated mutant of glucose-fructose oxidoreductase shows that an N-terminal arm controls tetramer formation.
    Lott JS, Halbig D, Baker HM, Hardman MJ, Sprenger GA, Baker EN.
    J Mol Biol; 2000 Dec 08; 304(4):575-84. PubMed ID: 11099381
    [Abstract] [Full Text] [Related]

  • 15. Characterization of heterologous and native enzyme activity profiles in metabolically engineered Zymomonas mobilis strains during batch fermentation of glucose and xylose mixtures.
    Gao Q, Zhang M, McMillan JD, Kompala DS.
    Appl Biochem Biotechnol; 2002 Dec 08; 98-100():341-55. PubMed ID: 12018261
    [Abstract] [Full Text] [Related]

  • 16. Glucose-fructose oxidoreductase, a periplasmic enzyme of Zymomonas mobilis, is active in its precursor form.
    Loos H, Sahm H, Sprenger GA.
    FEMS Microbiol Lett; 1993 Mar 01; 107(2-3):293-8. PubMed ID: 8472911
    [Abstract] [Full Text] [Related]

  • 17. Kinetic and nuclear magnetic resonance studies of xylose metabolism by recombinant Zymomonas mobilis ZM4(pZB5).
    Kim IS, Barrow KD, Rogers PL.
    Appl Environ Microbiol; 2000 Jan 01; 66(1):186-93. PubMed ID: 10618222
    [Abstract] [Full Text] [Related]

  • 18. Export of the periplasmic NADP-containing glucose-fructose oxidoreductase of Zymomonas mobilis.
    Wiegert T, Sahm H, Sprenger GA.
    Arch Microbiol; 1996 Jul 01; 166(1):32-41. PubMed ID: 8661942
    [Abstract] [Full Text] [Related]

  • 19. Analysis of experimental errors in bioprocesses. 1. Production of lactobionic acid and sorbitol using the GFOR (glucose-fructose oxidoreductase) enzyme from permeabilized cells of Zymomonas mobilis.
    Severo JB, Pinto JC, Ferraz HC, Alves TL.
    J Ind Microbiol Biotechnol; 2011 Sep 01; 38(9):1575-85. PubMed ID: 21328074
    [Abstract] [Full Text] [Related]

  • 20. Kinetic modeling to optimize pentose fermentation in Zymomonas mobilis.
    Altintas MM, Eddy CK, Zhang M, McMillan JD, Kompala DS.
    Biotechnol Bioeng; 2006 Jun 05; 94(2):273-95. PubMed ID: 16570322
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.