These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


217 related items for PubMed ID: 19243153

  • 21. Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications.
    Ramstedt M, Cheng N, Azzaroni O, Mossialos D, Mathieu HJ, Huck WT.
    Langmuir; 2007 Mar 13; 23(6):3314-21. PubMed ID: 17291016
    [Abstract] [Full Text] [Related]

  • 22. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes.
    Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A.
    Langmuir; 2012 May 08; 28(18):7212-22. PubMed ID: 22500465
    [Abstract] [Full Text] [Related]

  • 23. Stability and nonfouling properties of poly(poly(ethylene glycol) methacrylate) brushes under cell culture conditions.
    Tugulu S, Klok HA.
    Biomacromolecules; 2008 Mar 08; 9(3):906-12. PubMed ID: 18260637
    [Abstract] [Full Text] [Related]

  • 24. Transmission electron microscopy study of solvent-induced phase morphologies of environmentally responsive mixed homopolymer brushes on silica particles.
    Zhu L, Zhao B.
    J Phys Chem B; 2008 Sep 18; 112(37):11529-36. PubMed ID: 18712905
    [Abstract] [Full Text] [Related]

  • 25. Grafting acrylic polymers from flat nickel and copper surfaces by surface-initiated atom transfer radical polymerization.
    Chen R, Zhu S, Maclaughlin S.
    Langmuir; 2008 Jun 01; 24(13):6889-96. PubMed ID: 18507417
    [Abstract] [Full Text] [Related]

  • 26. Environmentally responsive "hairy" nanoparticles: mixed homopolymer brushes on silica nanoparticles synthesized by living radical polymerization techniques.
    Li D, Sheng X, Zhao B.
    J Am Chem Soc; 2005 May 04; 127(17):6248-56. PubMed ID: 15853330
    [Abstract] [Full Text] [Related]

  • 27. Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability.
    de Groot GW, Santonicola MG, Sugihara K, Zambelli T, Reimhult E, Vörös J, Vancso GJ.
    ACS Appl Mater Interfaces; 2013 Feb 04; 5(4):1400-7. PubMed ID: 23360664
    [Abstract] [Full Text] [Related]

  • 28. Grafting of poly(acrylic acid) onto an aluminum surface.
    Barroso-Bujans F, Serna R, Sow E, Fierro JL, Veith M.
    Langmuir; 2009 Aug 18; 25(16):9094-100. PubMed ID: 19591493
    [Abstract] [Full Text] [Related]

  • 29. Completely aqueous procedure for the growth of polymer brushes on polymeric substrates.
    Jain P, Dai J, Grajales S, Saha S, Baker GL, Bruening ML.
    Langmuir; 2007 Nov 06; 23(23):11360-5. PubMed ID: 17918978
    [Abstract] [Full Text] [Related]

  • 30. Adsorption of bovine hemoglobin onto spherical polyelectrolyte brushes monitored by small-angle X-ray scattering and Fourier transform infrared spectroscopy.
    Henzler K, Wittemann A, Breininger E, Ballauff M, Rosenfeldt S.
    Biomacromolecules; 2007 Nov 06; 8(11):3674-81. PubMed ID: 17929973
    [Abstract] [Full Text] [Related]

  • 31. Electrokinetic characterization of poly(acrylic acid) and poly(ethylene oxide) brushes in aqueous electrolyte solutions.
    Zimmermann R, Norde W, Cohen Stuart MA, Werner C.
    Langmuir; 2005 May 24; 21(11):5108-14. PubMed ID: 15896058
    [Abstract] [Full Text] [Related]

  • 32. Surface-grafted poly(acrylic acid) brushes as a precursor layer for biosensing applications: effect of graft density and swellability on the detection efficiency.
    Akkahat P, Mekboonsonglarp W, Kiatkamjornwong S, Hoven VP.
    Langmuir; 2012 Mar 20; 28(11):5302-11. PubMed ID: 22329634
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Glucose monitoring using a polymer brush modified polypropylene hollow fiber-based hydraulic flow sensor.
    Fortin N, Klok HA.
    ACS Appl Mater Interfaces; 2015 Mar 04; 7(8):4631-40. PubMed ID: 25675859
    [Abstract] [Full Text] [Related]

  • 38. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.
    Yadav V, Harkin AV, Robertson ML, Conrad JC.
    Soft Matter; 2016 Apr 21; 12(15):3589-99. PubMed ID: 26979270
    [Abstract] [Full Text] [Related]

  • 39. Electrochemical characteristics of polyelectrolyte brushes with electroactive counterions.
    Choi EY, Azzaroni O, Cheng N, Zhou F, Kelby T, Huck WT.
    Langmuir; 2007 Sep 25; 23(20):10389-94. PubMed ID: 17760471
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.