These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
385 related items for PubMed ID: 19244488
1. Ecology of sulfate-reducing bacteria in an iron-dominated, mining-impacted freshwater sediment. Ramamoorthy S, Piotrowski JS, Langner HW, Holben WE, Morra MJ, Rosenzweig RF. J Environ Qual; 2009; 38(2):675-84. PubMed ID: 19244488 [Abstract] [Full Text] [Related]
2. Blood lead concentrations in waterfowl utilizing Lake Coeur d'Alene, Idaho. Spears BL, Hansen JA, Audet DJ. Arch Environ Contam Toxicol; 2007 Jan; 52(1):121-8. PubMed ID: 17082999 [Abstract] [Full Text] [Related]
3. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A, Mussmann M, Sass H, Cypionka H, Könneke M. Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [Abstract] [Full Text] [Related]
4. Factors affecting methylmercury distribution in surficial, acidic, base-metal mine tailings. Winch S, Praharaj T, Fortin D, Lean DR. Sci Total Environ; 2008 Mar 25; 392(2-3):242-51. PubMed ID: 18191180 [Abstract] [Full Text] [Related]
5. Spatial variability of sulfate reduction in a shallow aquifer. Musslewhite CL, Swift D, Gilpen J, McInerney MJ. Environ Microbiol; 2007 Nov 25; 9(11):2810-9. PubMed ID: 17922764 [Abstract] [Full Text] [Related]
6. Anaerobic oxidation of dimethylsulfide and methanethiol in mangrove sediments is dominated by sulfate-reducing bacteria. Lyimo TJ, Pol A, Harhangi HR, Jetten MS, Op den Camp HJ. FEMS Microbiol Ecol; 2009 Dec 25; 70(3):483-92. PubMed ID: 19744237 [Abstract] [Full Text] [Related]
11. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jørgensen BB. Environ Microbiol; 2009 May 25; 11(5):1278-91. PubMed ID: 19220398 [Abstract] [Full Text] [Related]
12. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. Kappler A, Benz M, Schink B, Brune A. FEMS Microbiol Ecol; 2004 Jan 01; 47(1):85-92. PubMed ID: 19712349 [Abstract] [Full Text] [Related]
13. Effects of sulfate reducing bacteria and sulfate concentrations on mercury methylation in freshwater sediments. Shao D, Kang Y, Wu S, Wong MH. Sci Total Environ; 2012 May 01; 424():331-6. PubMed ID: 22444059 [Abstract] [Full Text] [Related]
16. Effects of a reactive barrier and aquifer geology on metal distribution and mobility in a mine drainage impacted aquifer. Doerr NA, Ptacek CJ, Blowes DW. J Contam Hydrol; 2005 Jun 01; 78(1-2):1-25. PubMed ID: 15949605 [Abstract] [Full Text] [Related]
17. Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin. Berg JS, Jézéquel D, Duverger A, Lamy D, Laberty-Robert C, Miot J. PLoS One; 2019 Jun 01; 14(2):e0212787. PubMed ID: 30794698 [Abstract] [Full Text] [Related]
18. Abundance and diversity of sulfate-reducing bacteria in the sediment of the Zhou Cun drinking water reservoir in Eastern China. Yang X, Huang TL, Guo L, Xia C, Zhang HH, Zhou SL. Genet Mol Res; 2015 May 29; 14(2):5830-44. PubMed ID: 26125782 [Abstract] [Full Text] [Related]
19. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina. Wendt-Potthoff K, Koschorreck M. Microb Ecol; 2002 Jan 29; 43(1):92-106. PubMed ID: 11984632 [Abstract] [Full Text] [Related]
20. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria. Rao AG, Ravichandra P, Joseph J, Jetty A, Sarma PN. J Hazard Mater; 2007 Aug 25; 147(3):718-25. PubMed ID: 17324510 [Abstract] [Full Text] [Related] Page: [Next] [New Search]