These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 19244987

  • 1. Carbon emission targets for driving sustainable mobility with US light-duty vehicles.
    Grimes-Casey HG, Keoleian GA, Willcox B.
    Environ Sci Technol; 2009 Feb 01; 43(3):585-90. PubMed ID: 19244987
    [Abstract] [Full Text] [Related]

  • 2. Alternative Fuel Vehicle Adoption Increases Fleet Gasoline Consumption and Greenhouse Gas Emissions under United States Corporate Average Fuel Economy Policy and Greenhouse Gas Emissions Standards.
    Jenn A, Azevedo IM, Michalek JJ.
    Environ Sci Technol; 2016 Mar 01; 50(5):2165-74. PubMed ID: 26867100
    [Abstract] [Full Text] [Related]

  • 3. Carbonaceous aerosols emitted from light-duty vehicles operating on gasoline and ethanol fuel blends.
    Hays MD, Preston W, George BJ, Schmid J, Baldauf R, Snow R, Robinson JR, Long T, Faircloth J.
    Environ Sci Technol; 2013 Dec 17; 47(24):14502-9. PubMed ID: 24246086
    [Abstract] [Full Text] [Related]

  • 4. Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.
    Winkler SL, Wallington TJ, Maas H, Hass H.
    Environ Sci Technol; 2014 Jun 03; 48(11):6453-60. PubMed ID: 24798684
    [Abstract] [Full Text] [Related]

  • 5. Greenhouse gas emission benefits of adopting new energy vehicles in Suzhou City, China: A case study.
    Da C, Gu X, Lu C, Hua R, Chang X, Cheng Y, Qian F, Wang Y.
    Environ Sci Pollut Res Int; 2022 Oct 03; 29(50):76286-76297. PubMed ID: 35668254
    [Abstract] [Full Text] [Related]

  • 6. Reducing Greenhouse Gas Emissions from U.S. Light-Duty Transport in Line with the 2 °C Target.
    Zhu Y, Skerlos S, Xu M, Cooper DR.
    Environ Sci Technol; 2021 Jul 06; 55(13):9326-9338. PubMed ID: 34106694
    [Abstract] [Full Text] [Related]

  • 7. Role of fuel carbon intensity in achieving 2050 greenhouse gas reduction goals within the light-duty vehicle sector.
    Melaina M, Webster K.
    Environ Sci Technol; 2011 May 01; 45(9):3865-71. PubMed ID: 21456550
    [Abstract] [Full Text] [Related]

  • 8. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.
    Elgowainy A, Han J, Ward J, Joseck F, Gohlke D, Lindauer A, Ramsden T, Biddy M, Alexander M, Barnhart S, Sutherland I, Verduzco L, Wallington TJ.
    Environ Sci Technol; 2018 Feb 20; 52(4):2392-2399. PubMed ID: 29298387
    [Abstract] [Full Text] [Related]

  • 9. Consideration of black carbon and primary organic carbon emissions in life-cycle analysis of Greenhouse gas emissions of vehicle systems and fuels.
    Cai H, Wang MQ.
    Environ Sci Technol; 2014 Oct 21; 48(20):12445-53. PubMed ID: 25259852
    [Abstract] [Full Text] [Related]

  • 10. Emission Impacts of Electric Vehicles in the US Transportation Sector Following Optimistic Cost and Efficiency Projections.
    Keshavarzmohammadian A, Henze DK, Milford JB.
    Environ Sci Technol; 2017 Jun 20; 51(12):6665-6673. PubMed ID: 28399368
    [Abstract] [Full Text] [Related]

  • 11. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO, Lee SR, HEI Health Review Committee.
    Res Rep Health Eff Inst; 2014 Jun 20; (179):3-79. PubMed ID: 25145039
    [Abstract] [Full Text] [Related]

  • 12. Economic and environmental benefits of higher-octane gasoline.
    Speth RL, Chow EW, Malina R, Barrett SR, Heywood JB, Green WH.
    Environ Sci Technol; 2014 Jun 17; 48(12):6561-8. PubMed ID: 24870412
    [Abstract] [Full Text] [Related]

  • 13. CO2 emission benefit of diesel (versus gasoline) powered vehicles.
    Sullivan JL, Baker RE, Boyer BA, Hammerle RH, Kenney TE, Muniz L, Wallington TJ.
    Environ Sci Technol; 2004 Jun 15; 38(12):3217-23. PubMed ID: 15260316
    [Abstract] [Full Text] [Related]

  • 14. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M, Wu Y, Wang M.
    Biotechnol Prog; 2006 Jun 15; 22(4):1012-24. PubMed ID: 16889378
    [Abstract] [Full Text] [Related]

  • 15. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.
    Leone TG, Anderson JE, Davis RS, Iqbal A, Reese RA, Shelby MH, Studzinski WM.
    Environ Sci Technol; 2015 Sep 15; 49(18):10778-89. PubMed ID: 26237538
    [Abstract] [Full Text] [Related]

  • 16. Future methane emissions from the heavy-duty natural gas transportation sector for stasis, high, medium, and low scenarios in 2035.
    Clark NN, Johnson DR, McKain DL, Wayne WS, Li H, Rudek J, Mongold RA, Sandoval C, Covington AN, Hailer JT.
    J Air Waste Manag Assoc; 2017 Dec 15; 67(12):1328-1341. PubMed ID: 28829681
    [Abstract] [Full Text] [Related]

  • 17. Personal Vehicles Evaluated against Climate Change Mitigation Targets.
    Miotti M, Supran GJ, Kim EJ, Trancik JE.
    Environ Sci Technol; 2016 Oct 18; 50(20):10795-10804. PubMed ID: 27676468
    [Abstract] [Full Text] [Related]

  • 18. Trends in onroad transportation energy and emissions.
    Frey HC.
    J Air Waste Manag Assoc; 2018 Jun 18; 68(6):514-563. PubMed ID: 29589998
    [Abstract] [Full Text] [Related]

  • 19. Characteristics of black carbon emissions from in-use light-duty passenger vehicles.
    Zheng X, Zhang S, Wu Y, Zhang KM, Wu X, Li Z, Hao J.
    Environ Pollut; 2017 Dec 18; 231(Pt 1):348-356. PubMed ID: 28810204
    [Abstract] [Full Text] [Related]

  • 20. A life-cycle comparison of alternative automobile fuels.
    MacLean HL, Lave LB, Lankey R, Joshi S.
    J Air Waste Manag Assoc; 2000 Oct 18; 50(10):1769-79. PubMed ID: 11288305
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.