These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


458 related items for PubMed ID: 19246264

  • 1. Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications.
    Grande CJ, Torres FG, Gomez CM, Bañó MC.
    Acta Biomater; 2009 Jun; 5(5):1605-15. PubMed ID: 19246264
    [Abstract] [Full Text] [Related]

  • 2. Hydroxyapatite-TiO(2)-based nanocomposites synthesized in supercritical CO(2) for bone tissue engineering: physical and mechanical properties.
    Salarian M, Xu WZ, Wang Z, Sham TK, Charpentier PA.
    ACS Appl Mater Interfaces; 2014 Oct 08; 6(19):16918-31. PubMed ID: 25184699
    [Abstract] [Full Text] [Related]

  • 3. Preparation of biocompatible magnetite-carboxymethyl cellulose nanocomposite: characterization of nanocomposite by FTIR, XRD, FESEM and TEM.
    Habibi N.
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct 15; 131():55-8. PubMed ID: 24820322
    [Abstract] [Full Text] [Related]

  • 4. Synthesis and characterization of bioactive hydroxyapatite-calcite nanocomposite for biomedical applications.
    Kumar GS, Girija EK, Thamizhavel A, Yokogawa Y, Kalkura SN.
    J Colloid Interface Sci; 2010 Sep 01; 349(1):56-62. PubMed ID: 20541216
    [Abstract] [Full Text] [Related]

  • 5. pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites.
    Shao W, Liu H, Liu X, Sun H, Wang S, Zhang R.
    Int J Biol Macromol; 2015 May 01; 76():209-17. PubMed ID: 25748842
    [Abstract] [Full Text] [Related]

  • 6. SEM and TEM for structure and properties characterization of bacterial cellulose/hydroxyapatite composites.
    Arkharova NA, Suvorova EI, Severin AV, Khripunov AK, Krasheninnikov SV, Klechkovskaya VV.
    Scanning; 2016 Nov 01; 38(6):757-765. PubMed ID: 27171920
    [Abstract] [Full Text] [Related]

  • 7. Zinc and manganese substituted hydroxyapatite/CMC/PVP electrospun composite for bone repair applications.
    Kandasamy S, Narayanan V, Sumathi S.
    Int J Biol Macromol; 2020 Feb 15; 145():1018-1030. PubMed ID: 31726129
    [Abstract] [Full Text] [Related]

  • 8. Synthesis, characterization, biocompatibility of hydroxyapatite-natural polymers nanocomposites for dentistry applications.
    Chung JH, Kim YK, Kim KH, Kwon TY, Vaezmomeni SZ, Samiei M, Aghazadeh M, Davaran S, Mahkam M, Asadi G, Akbarzadeh A.
    Artif Cells Nanomed Biotechnol; 2016 Feb 15; 44(1):277-84. PubMed ID: 25111051
    [Abstract] [Full Text] [Related]

  • 9. Fabrication and characterization of novel biomimetic PLLA/cellulose/hydroxyapatite nanocomposite for bone repair applications.
    Eftekhari S, El Sawi I, Bagheri ZS, Turcotte G, Bougherara H.
    Mater Sci Eng C Mater Biol Appl; 2014 Jun 01; 39():120-5. PubMed ID: 24863207
    [Abstract] [Full Text] [Related]

  • 10. Biomimetic nanocomposites of carboxymethyl cellulose-hydroxyapatite: novel three dimensional load bearing bone grafts.
    Garai S, Sinha A.
    Colloids Surf B Biointerfaces; 2014 Mar 01; 115():182-90. PubMed ID: 24342800
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Agarose encapsulated mesoporous carbonated hydroxyapatite nanocomposites powder for drug delivery.
    Kolanthai E, Abinaya Sindu P, Thanigai Arul K, Sarath Chandra V, Manikandan E, Narayana Kalkura S.
    J Photochem Photobiol B; 2017 Jan 01; 166():220-231. PubMed ID: 28012416
    [Abstract] [Full Text] [Related]

  • 13. Hydroxyapatite/sericin composites: A simple synthesis route under near-physiological conditions of temperature and pH and preliminary study of the effect of sericin on the biomineralization process.
    Veiga A, Castro F, Reis CC, Sousa A, Oliveira AL, Rocha F.
    Mater Sci Eng C Mater Biol Appl; 2020 Mar 01; 108():110400. PubMed ID: 31923995
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. In situ growth of hydroxyapatite within electrospun poly(DL-lactide) fibers.
    Cui W, Li X, Zhou S, Weng J.
    J Biomed Mater Res A; 2007 Sep 15; 82(4):831-41. PubMed ID: 17326137
    [Abstract] [Full Text] [Related]

  • 16. Spectral characterization of apatite formation on poly(2-hydroxyethylmethacrylate)-TiO2 nanocomposite film prepared by sol-gel process.
    Prashantha K, Rashmi BJ, Venkatesha TV, Lee JH.
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Oct 15; 65(2):340-4. PubMed ID: 16503415
    [Abstract] [Full Text] [Related]

  • 17. Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method.
    Gopi D, Indira J, Kavitha L, Sekar M, Mudali UK.
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul 15; 93():131-4. PubMed ID: 22472129
    [Abstract] [Full Text] [Related]

  • 18. Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid.
    Mirzaee M, Vaezi M, Palizdar Y.
    Mater Sci Eng C Mater Biol Appl; 2016 Dec 01; 69():675-84. PubMed ID: 27612761
    [Abstract] [Full Text] [Related]

  • 19. In situ synthesis of bacterial cellulose/polycaprolactone blends for hot pressing nanocomposite films production.
    Figueiredo AR, Silvestre AJ, Pascoal Neto C, Freire CS.
    Carbohydr Polym; 2015 Nov 05; 132():400-8. PubMed ID: 26256364
    [Abstract] [Full Text] [Related]

  • 20. Interactions binding mineral and organic phases in nanocomposites based on bacterial cellulose and calcium phosphates.
    Tolmachev DA, Lukasheva NV.
    Langmuir; 2012 Sep 18; 28(37):13473-84. PubMed ID: 22880938
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.