These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. The lac operon of Lactobacillus casei contains lacT, a gene coding for a protein of the Bg1G family of transcriptional antiterminators. Alpert CA, Siebers U. J Bacteriol; 1997 Mar; 179(5):1555-62. PubMed ID: 9045813 [Abstract] [Full Text] [Related]
5. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei. Gosalbes MJ, Monedero V, Pérez-Martínez G. J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959 [Abstract] [Full Text] [Related]
6. The lactose operon from Lactobacillus casei is involved in the transport and metabolism of the human milk oligosaccharide core-2 N-acetyllactosamine. Bidart GN, Rodríguez-Díaz J, Pérez-Martínez G, Yebra MJ. Sci Rep; 2018 May 08; 8(1):7152. PubMed ID: 29740087 [Abstract] [Full Text] [Related]
7. Molecular cloning and nucleotide sequence of the factor IIIlac gene of Lactobacillus casei. Alpert CA, Chassy BM. Gene; 1988 May 08; 62(2):277-88. PubMed ID: 3130296 [Abstract] [Full Text] [Related]
9. Comparison of gal-lac operons in wild-type galactose-positive and -negative Streptococcus thermophilus by genomics and transcription analysis. Xiong ZQ, Kong LH, Meng HL, Cui JM, Xia YJ, Wang SJ, Ai LZ. J Ind Microbiol Biotechnol; 2019 May 08; 46(5):751-758. PubMed ID: 30715626 [Abstract] [Full Text] [Related]
11. Structural features of the lac promoter affecting gusA expression in Lactobacillus casei. Pérez-Arellano I, Pérez-Martínez G. Curr Microbiol; 2002 Sep 08; 45(3):191-6. PubMed ID: 12177741 [Abstract] [Full Text] [Related]
12. Identification of a gene cluster enabling Lactobacillus casei BL23 to utilize myo-inositol. Yebra MJ, Zúñiga M, Beaufils S, Pérez-Martínez G, Deutscher J, Monedero V. Appl Environ Microbiol; 2007 Jun 08; 73(12):3850-8. PubMed ID: 17449687 [Abstract] [Full Text] [Related]
13. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei. Chassy BM, Thompson J. J Bacteriol; 1983 Jun 08; 154(3):1195-203. PubMed ID: 6406426 [Abstract] [Full Text] [Related]
14. Genetics of L-sorbose transport and metabolism in Lactobacillus casei. Yebra MJ, Veyrat A, Santos MA, Pérez-Martínez G. J Bacteriol; 2000 Jan 08; 182(1):155-63. PubMed ID: 10613875 [Abstract] [Full Text] [Related]
16. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products. Vaillancourt K, Moineau S, Frenette M, Lessard C, Vadeboncoeur C. J Bacteriol; 2002 Feb 08; 184(3):785-93. PubMed ID: 11790749 [Abstract] [Full Text] [Related]
17. Requirement of the Lactobacillus casei MaeKR two-component system for L-malic acid utilization via a malic enzyme pathway. Landete JM, García-Haro L, Blasco A, Manzanares P, Berbegal C, Monedero V, Zúñiga M. Appl Environ Microbiol; 2010 Jan 08; 76(1):84-95. PubMed ID: 19897756 [Abstract] [Full Text] [Related]
19. Genomic adaptation of the Lactobacillus casei group. Toh H, Oshima K, Nakano A, Takahata M, Murakami M, Takaki T, Nishiyama H, Igimi S, Hattori M, Morita H. PLoS One; 2013 Jan 08; 8(10):e75073. PubMed ID: 24116025 [Abstract] [Full Text] [Related]
20. The gal genes for the Leloir pathway of Lactobacillus casei 64H. Bettenbrock K, Alpert CA. Appl Environ Microbiol; 1998 Jun 08; 64(6):2013-9. PubMed ID: 9603808 [Abstract] [Full Text] [Related] Page: [Next] [New Search]