These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


756 related items for PubMed ID: 19250891

  • 1. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM, Cole AA, Bjugstad KB, Mahoney MJ.
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [Abstract] [Full Text] [Related]

  • 2. Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels.
    Mahoney MJ, Anseth KS.
    Biomaterials; 2006 Apr; 27(10):2265-74. PubMed ID: 16318872
    [Abstract] [Full Text] [Related]

  • 3. Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application.
    Sannino A, Netti PA, Madaghiele M, Coccoli V, Luciani A, Maffezzoli A, Nicolais L.
    J Biomed Mater Res A; 2006 Nov; 79(2):229-36. PubMed ID: 16752396
    [Abstract] [Full Text] [Related]

  • 4. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds.
    Arcaute K, Mann B, Wicker R.
    Acta Biomater; 2010 Mar; 6(3):1047-54. PubMed ID: 19683602
    [Abstract] [Full Text] [Related]

  • 5. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.
    Goraltchouk A, Freier T, Shoichet MS.
    Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955
    [Abstract] [Full Text] [Related]

  • 6. Fabrication of poly(ethylene glycol) hydrogel micropatterns with osteoinductive growth factors and evaluation of the effects on osteoblast activity and function.
    Subramani K, Birch MA.
    Biomed Mater; 2006 Sep; 1(3):144-54. PubMed ID: 18458396
    [Abstract] [Full Text] [Related]

  • 7. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production.
    Bryant SJ, Bender RJ, Durand KL, Anseth KS.
    Biotechnol Bioeng; 2004 Jun 30; 86(7):747-55. PubMed ID: 15162450
    [Abstract] [Full Text] [Related]

  • 8. Enzyme-degradable phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell matrices.
    Wachiralarpphaithoon C, Iwasaki Y, Akiyoshi K.
    Biomaterials; 2007 Feb 30; 28(6):984-93. PubMed ID: 17107708
    [Abstract] [Full Text] [Related]

  • 9. The role of pore size on vascularization and tissue remodeling in PEG hydrogels.
    Chiu YC, Cheng MH, Engel H, Kao SW, Larson JC, Gupta S, Brey EM.
    Biomaterials; 2011 Sep 30; 32(26):6045-51. PubMed ID: 21663958
    [Abstract] [Full Text] [Related]

  • 10. Influence of ECM proteins and their analogs on cells cultured on 2-D hydrogels for cardiac muscle tissue engineering.
    LaNasa SM, Bryant SJ.
    Acta Biomater; 2009 Oct 30; 5(8):2929-38. PubMed ID: 19457460
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture.
    Lampe KJ, Mooney RG, Bjugstad KB, Mahoney MJ.
    J Biomed Mater Res A; 2010 Sep 15; 94(4):1162-71. PubMed ID: 20694983
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L, Seliktar D.
    Biomaterials; 2005 May 15; 26(15):2467-77. PubMed ID: 15585249
    [Abstract] [Full Text] [Related]

  • 16. Inorganic-organic hybrid scaffolds for osteochondral regeneration.
    Munoz-Pinto DJ, McMahon RE, Kanzelberger MA, Jimenez-Vergara AC, Grunlan MA, Hahn MS.
    J Biomed Mater Res A; 2010 Jul 15; 94(1):112-21. PubMed ID: 20128006
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Contrasting effects of collagen and bFGF-2 on neural cell function in degradable synthetic PEG hydrogels.
    Mahoney MJ, Anseth KS.
    J Biomed Mater Res A; 2007 May 15; 81(2):269-78. PubMed ID: 17120204
    [Abstract] [Full Text] [Related]

  • 19. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks.
    Hudalla GA, Eng TS, Murphy WL.
    Biomacromolecules; 2008 Mar 15; 9(3):842-9. PubMed ID: 18288800
    [Abstract] [Full Text] [Related]

  • 20. Viral infection of human progenitor and liver-derived cells encapsulated in three-dimensional PEG-based hydrogel.
    Cho NJ, Elazar M, Xiong A, Lee W, Chiao E, Baker J, Frank CW, Glenn JS.
    Biomed Mater; 2009 Feb 15; 4(1):011001. PubMed ID: 18981544
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 38.