These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


291 related items for PubMed ID: 19252083

  • 21. Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus, Magnaporthe oryzae.
    Choi J, Chung H, Lee GW, Koh SK, Chae SK, Lee YH.
    PLoS One; 2015; 10(8):e0134939. PubMed ID: 26241858
    [Abstract] [Full Text] [Related]

  • 22. Visualizing the Movement of Magnaporthe oryzae Effector Proteins in Rice Cells During Infection.
    Jones K, Khang CH.
    Methods Mol Biol; 2018; 1848():103-117. PubMed ID: 30182232
    [Abstract] [Full Text] [Related]

  • 23. Disruption of actin motor function due to MoMyo5 mutation impairs host penetration and pathogenicity in Magnaporthe oryzae.
    Tang W, Gao C, Wang J, Yin Z, Zhang J, Ji J, Zhang H, Zheng X, Zhang Z, Wang P.
    Mol Plant Pathol; 2018 Mar; 19(3):689-699. PubMed ID: 28378891
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. PdeH, a high-affinity cAMP phosphodiesterase, is a key regulator of asexual and pathogenic differentiation in Magnaporthe oryzae.
    Ramanujam R, Naqvi NI.
    PLoS Pathog; 2010 May 06; 6(5):e1000897. PubMed ID: 20463817
    [Abstract] [Full Text] [Related]

  • 26. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae.
    Kim S, Park SY, Kim KS, Rho HS, Chi MH, Choi J, Park J, Kong S, Park J, Goh J, Lee YH.
    PLoS Genet; 2009 Dec 06; 5(12):e1000757. PubMed ID: 19997500
    [Abstract] [Full Text] [Related]

  • 27. A histone deacetylase, MoHOS2 regulates asexual development and virulence in the rice blast fungus.
    Lee J, Lee JJ, Jeon J.
    J Microbiol; 2019 Dec 06; 57(12):1115-1125. PubMed ID: 31758396
    [Abstract] [Full Text] [Related]

  • 28. TOR-autophagy branch signaling via Imp1 dictates plant-microbe biotrophic interface longevity.
    Sun G, Elowsky C, Li G, Wilson RA.
    PLoS Genet; 2018 Nov 06; 14(11):e1007814. PubMed ID: 30462633
    [Abstract] [Full Text] [Related]

  • 29. Mitochondrial fission protein MoFis1 mediates conidiation and is required for full virulence of the rice blast fungus Magnaporthe oryzae.
    Khan IA, Ning G, Liu X, Feng X, Lin F, Lu J.
    Microbiol Res; 2015 Sep 06; 178():51-8. PubMed ID: 26302847
    [Abstract] [Full Text] [Related]

  • 30. Role of Two Metacaspases in Development and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae.
    Fernandez J, Lopez V, Kinch L, Pfeifer MA, Gray H, Garcia N, Grishin NV, Khang CH, Orth K.
    mBio; 2021 Feb 09; 12(1):. PubMed ID: 33563831
    [Abstract] [Full Text] [Related]

  • 31. Fluorescent reporter analysis revealed the timing and localization of AVR-Pia expression, an avirulence effector of Magnaporthe oryzae.
    Sornkom W, Miki S, Takeuchi S, Abe A, Asano K, Sone T.
    Mol Plant Pathol; 2017 Oct 09; 18(8):1138-1149. PubMed ID: 27528510
    [Abstract] [Full Text] [Related]

  • 32. Disruption of putative short-chain acyl-CoA dehydrogenases compromised free radical scavenging, conidiogenesis, and pathogenesis of Magnaporthe oryzae.
    Aliyu SR, Lin L, Chen X, Abdul W, Lin Y, Otieno FJ, Shabbir A, Batool W, Zhang Y, Tang W, Wang Z, Norvienyeku J.
    Fungal Genet Biol; 2019 Jun 09; 127():23-34. PubMed ID: 30822500
    [Abstract] [Full Text] [Related]

  • 33. Genetic evidence for Magnaporthe oryzae vitamin B3 acquisition from rice cells.
    Wilson RA, Fernandez J, Rocha RO, Marroquin-Guzman M, Wright JD.
    Microbiology (Reading); 2019 Nov 09; 165(11):1198-1202. PubMed ID: 31517594
    [Abstract] [Full Text] [Related]

  • 34. F-box only and CUE proteins are crucial ubiquitination-associated components for conidiation and pathogenicity in the rice blast fungus, Magnaporthe oryzae.
    Lim YJ, Lee YH.
    Fungal Genet Biol; 2020 Nov 09; 144():103473. PubMed ID: 32991996
    [Abstract] [Full Text] [Related]

  • 35. WISH, a novel CFEM GPCR is indispensable for surface sensing, asexual and pathogenic differentiation in rice blast fungus.
    Sabnam N, Roy Barman S.
    Fungal Genet Biol; 2017 Aug 09; 105():37-51. PubMed ID: 28576657
    [Abstract] [Full Text] [Related]

  • 36. Shedding light on autophagy coordinating with cell wall integrity signaling to govern pathogenicity of Magnaporthe oryzae.
    Yin Z, Feng W, Chen C, Xu J, Li Y, Yang L, Wang J, Liu X, Wang W, Gao C, Zhang H, Zheng X, Wang P, Zhang Z.
    Autophagy; 2020 May 09; 16(5):900-916. PubMed ID: 31313634
    [Abstract] [Full Text] [Related]

  • 37. Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae.
    Oliveira-Garcia E, Yan X, Oses-Ruiz M, de Paula S, Talbot NJ.
    New Phytol; 2024 Feb 09; 241(3):1007-1020. PubMed ID: 38073141
    [Abstract] [Full Text] [Related]

  • 38. Saccharomyces cerevisiae Rot1p is an ER-localized membrane protein that may function with BiP/Kar2p in protein folding.
    Takeuchi M, Kimata Y, Hirata A, Oka M, Kohno K.
    J Biochem; 2006 Mar 09; 139(3):597-605. PubMed ID: 16567426
    [Abstract] [Full Text] [Related]

  • 39. Endosomal sorting complexes required for transport-0 (ESCRT-0) are essential for fungal development, pathogenicity, autophagy and ER-phagy in Magnaporthe oryzae.
    Sun LX, Qian H, Liu MY, Wu MH, Wei YY, Zhu XM, Lu JP, Lin FC, Liu XH.
    Environ Microbiol; 2022 Mar 09; 24(3):1076-1092. PubMed ID: 34472190
    [Abstract] [Full Text] [Related]

  • 40. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement.
    Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY, Czymmek K, Kang S, Valent B.
    Plant Cell; 2010 Apr 09; 22(4):1388-403. PubMed ID: 20435900
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 15.