These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
95 related items for PubMed ID: 19256401
1. [Mechanism of interaction between Ag+ and Saccharomyces cerevisiae]. Chen C, Wang JL. Huan Jing Ke Xue; 2008 Dec; 29(12):3561-7. PubMed ID: 19256401 [Abstract] [Full Text] [Related]
2. [Characteristics of Ag+ biosorption by the waste biomass of Saccharomyces cerevisiae]. Chen C, Wang JL. Huan Jing Ke Xue; 2008 Nov; 29(11):3200-5. PubMed ID: 19186828 [Abstract] [Full Text] [Related]
4. [Cation (K+, Mg2+, Na+, Ca2+) release in Zn(II) biosorption by Saccharomyces cerevisiae]. Chen C, Wang JL. Huan Jing Ke Xue; 2006 Nov; 27(11):2261-7. PubMed ID: 17326437 [Abstract] [Full Text] [Related]
5. Investigating the interaction mechanism between zinc and Saccharomyces cerevisiae using combined SEM-EDX and XAFS. Chen C, Wang J. Appl Microbiol Biotechnol; 2008 May; 79(2):293-9. PubMed ID: 18414849 [Abstract] [Full Text] [Related]
6. Adsorption of Ag (I) from aqueous solution by waste yeast: kinetic, equilibrium and mechanism studies. Zhao Y, Wang D, Xie H, Won SW, Cui L, Wu G. Bioprocess Biosyst Eng; 2015 Jan; 38(1):69-77. PubMed ID: 24996651 [Abstract] [Full Text] [Related]
8. The use of native and protonated grapefruit biomass (Citrus paradisi L.) for cadmium(II) biosorption: equilibrium and kinetic modelling. Bayo J, Esteban G, Castillo J. Environ Technol; 2012 Jan; 33(7-9):761-72. PubMed ID: 22720399 [Abstract] [Full Text] [Related]
9. [Biosorption of direct scarlet dye on magnetically modified Saccharomyces cerevisiae cells]. Wu Q, Shan Z, Shen M, Li S, Chen H. Sheng Wu Gong Cheng Xue Bao; 2009 Oct; 25(10):1477-82. PubMed ID: 20112691 [Abstract] [Full Text] [Related]
10. [Interaction mechanism between Zn(II) and Saccharomyces cerevisiae using EXAFS]. Chen C, Xie YN, Du YH, Wang JL. Huan Jing Ke Xue; 2008 Jun; 29(6):1666-70. PubMed ID: 18763520 [Abstract] [Full Text] [Related]
14. Removal of Ni (II) ions from aqueous solutions by biosorption onto two strains of Yarrowia lipolytica. Shinde NR, Bankar AV, Kumar AR, Zinjarde SS. J Environ Manage; 2012 Jul 15; 102():115-24. PubMed ID: 22531429 [Abstract] [Full Text] [Related]
15. Removal of lead ions from aqueous solution by the dried aquatic plant, Lemna perpusilla Torr. Tang Y, Chen L, Wei X, Yao Q, Li T. J Hazard Mater; 2013 Jan 15; 244-245():603-12. PubMed ID: 23182246 [Abstract] [Full Text] [Related]
16. Biosorption of arsenic in drinking water by submerged plant: Hydrilla verticilata. Nigam S, Gopal K, Vankar PS. Environ Sci Pollut Res Int; 2013 Jun 15; 20(6):4000-8. PubMed ID: 23208752 [Abstract] [Full Text] [Related]
17. Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mungbean husk. Saeed A, Iqbal M, Höll WH. J Hazard Mater; 2009 Sep 15; 168(2-3):1467-75. PubMed ID: 19386413 [Abstract] [Full Text] [Related]