These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
694 related items for PubMed ID: 19256522
1. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida. Tasca F, Gorton L, Harreither W, Haltrich D, Ludwig R, Nöll G. Anal Chem; 2009 Apr 01; 81(7):2791-8. PubMed ID: 19256522 [Abstract] [Full Text] [Related]
3. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes. Matsumura H, Ortiz R, Ludwig R, Igarashi K, Samejima M, Gorton L. Langmuir; 2012 Jul 24; 28(29):10925-33. PubMed ID: 22746277 [Abstract] [Full Text] [Related]
4. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium. Igarashi K, Yoshida M, Matsumura H, Nakamura N, Ohno H, Samejima M, Nishino T. FEBS J; 2005 Jun 24; 272(11):2869-77. PubMed ID: 15943818 [Abstract] [Full Text] [Related]
5. Cellobiose dehydrogenase aryl diazonium modified single walled carbon nanotubes: enhanced direct electron transfer through a positively charged surface. Tasca F, Harreither W, Ludwig R, Gooding JJ, Gorton L. Anal Chem; 2011 Apr 15; 83(8):3042-9. PubMed ID: 21417322 [Abstract] [Full Text] [Related]
7. Electrochemical investigation of cellobiose dehydrogenase from new fungal sources on Au electrodes. Stoica L, Dimcheva N, Haltrich D, Ruzgas T, Gorton L. Biosens Bioelectron; 2005 Apr 15; 20(10):2010-8. PubMed ID: 15741070 [Abstract] [Full Text] [Related]
8. Graphite electrodes modified with Neurospora crassa cellobiose dehydrogenase: comparative electrochemical characterization under direct and mediated electron transfer. Kovacs G, Ortiz R, Coman V, Harreither W, Popescu IC, Ludwig R, Gorton L. Bioelectrochemistry; 2012 Dec 15; 88():84-91. PubMed ID: 22809780 [Abstract] [Full Text] [Related]
9. Electrochemical oxidation of water by a cellobiose dehydrogenase from Phanerochaete chrysosporium. Feng J, Himmel ME, Decker SR. Biotechnol Lett; 2005 Apr 15; 27(8):555-60. PubMed ID: 15973489 [Abstract] [Full Text] [Related]
10. Effect of deglycosylation of cellobiose dehydrogenases on the enhancement of direct electron transfer with electrodes. Ortiz R, Matsumura H, Tasca F, Zahma K, Samejima M, Igarashi K, Ludwig R, Gorton L. Anal Chem; 2012 Dec 04; 84(23):10315-23. PubMed ID: 23106311 [Abstract] [Full Text] [Related]
11. Localized deposition of Au nanoparticles by direct electron transfer through cellobiose dehydrogenase. Malel E, Ludwig R, Gorton L, Mandler D. Chemistry; 2010 Oct 11; 16(38):11697-706. PubMed ID: 20821760 [Abstract] [Full Text] [Related]
12. Tryptophan repressor-binding proteins from Escherichia coli and Archaeoglobus fulgidus as new catalysts for 1,4-dihydronicotinamide adenine dinucleotide-dependent amperometric biosensors and biofuel cells. Zafar MN, Tasca F, Gorton L, Patridge EV, Ferry JG, Nöll G. Anal Chem; 2009 May 15; 81(10):4082-8. PubMed ID: 19438267 [Abstract] [Full Text] [Related]
13. Improvement of direct bioelectrocatalysis by cellobiose dehydrogenase on screen printed graphite electrodes using polyaniline modification. Trashin SA, Haltrich D, Ludwig R, Gorton L, Karyakin AA. Bioelectrochemistry; 2009 Sep 15; 76(1-2):87-92. PubMed ID: 19570729 [Abstract] [Full Text] [Related]
14. Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli. Desriani, Ferri S, Sode K. Biotechnol Lett; 2010 Jun 15; 32(6):855-9. PubMed ID: 20140751 [Abstract] [Full Text] [Related]
15. Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes. E Ferapontova E, Gorton L. Bioelectrochemistry; 2005 Apr 15; 66(1-2):55-63. PubMed ID: 15833703 [Abstract] [Full Text] [Related]
16. Cloning and characterization of a thermostable cellobiose dehydrogenase from Sporotrichum thermophile. Subramaniam SS, Nagalla SR, Renganathan V. Arch Biochem Biophys; 1999 May 15; 365(2):223-30. PubMed ID: 10328816 [Abstract] [Full Text] [Related]
17. Recombinantly produced cellobiose dehydrogenase from Corynascus thermophilus for glucose biosensors and biofuel cells. Harreither W, Felice AK, Paukner R, Gorton L, Ludwig R, Sygmund C. Biotechnol J; 2012 Nov 15; 7(11):1359-66. PubMed ID: 22815189 [Abstract] [Full Text] [Related]
18. A biofuel cell with electrochemically switchable and tunable power output. Katz E, Willner I. J Am Chem Soc; 2003 Jun 04; 125(22):6803-13. PubMed ID: 12769592 [Abstract] [Full Text] [Related]
19. Increasing the coulombic efficiency of glucose biofuel cell anodes by combination of redox enzymes. Tasca F, Gorton L, Kujawa M, Patel I, Harreither W, Peterbauer CK, Ludwig R, Nöll G. Biosens Bioelectron; 2010 Mar 15; 25(7):1710-6. PubMed ID: 20071159 [Abstract] [Full Text] [Related]
20. Investigation of the pH-dependent electron transfer mechanism of ascomycetous class II cellobiose dehydrogenases on electrodes. Harreither W, Nicholls P, Sygmund C, Gorton L, Ludwig R. Langmuir; 2012 Apr 24; 28(16):6714-23. PubMed ID: 22471986 [Abstract] [Full Text] [Related] Page: [Next] [New Search]