These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


601 related items for PubMed ID: 19256664

  • 1. Multifrequency frequency-domain spectrometer for tissue analysis.
    Spichtig S, Hornung R, Brown DW, Haensse D, Wolf M.
    Rev Sci Instrum; 2009 Feb; 80(2):024301. PubMed ID: 19256664
    [Abstract] [Full Text] [Related]

  • 2. Transabdominal fetal pulse oximetry with near-infrared spectroscopy.
    Vintzileos AM, Nioka S, Lake M, Li P, Luo Q, Chance B.
    Am J Obstet Gynecol; 2005 Jan; 192(1):129-33. PubMed ID: 15672014
    [Abstract] [Full Text] [Related]

  • 3. Frequency domain near-infrared spectroscopy of the uterine cervix during cervical ripening.
    Baños A, Wolf M, Grawe C, Stahel M, Haensse D, Fink D, Hornung R.
    Lasers Surg Med; 2007 Sep; 39(8):641-6. PubMed ID: 17886282
    [Abstract] [Full Text] [Related]

  • 4. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration.
    Laufer J, Delpy D, Elwell C, Beard P.
    Phys Med Biol; 2007 Jan 07; 52(1):141-68. PubMed ID: 17183133
    [Abstract] [Full Text] [Related]

  • 5. [Optimally designing the probe of the near infrared oximeter to detect human tissue oxygen saturation non-invasively].
    Teng YC, Ye DT, Li Y, Huang L, Wu XY, Ding HS, Jin GF.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr 07; 28(4):953-7. PubMed ID: 18619339
    [Abstract] [Full Text] [Related]

  • 6. Identification and quantification of intrinsic optical contrast for near-infrared mammography.
    Quaresima V, Matcher SJ, Ferrari M.
    Photochem Photobiol; 1998 Jan 07; 67(1):4-14. PubMed ID: 9477760
    [Abstract] [Full Text] [Related]

  • 7. A near infrared instrument to monitor relative hemoglobin concentrations of human bone tissue in vitro and in vivo.
    Aziz SM, Khambatta F, Vaithianathan T, Thomas JC, Clark JM, Marshall R.
    Rev Sci Instrum; 2010 Apr 07; 81(4):043111. PubMed ID: 20441329
    [Abstract] [Full Text] [Related]

  • 8. Development of a near-infrared spectroscopy instrument for applications in urology.
    Macnab AJ, Stothers L.
    Can J Urol; 2008 Oct 07; 15(5):4233-40. PubMed ID: 18814811
    [Abstract] [Full Text] [Related]

  • 9. Broadband diffuse optical spectroscopy measurement of hemoglobin concentration during hypovolemia in rabbits.
    Lee J, Saltzman DJ, Cerussi AE, Gelfand DV, Milliken J, Waddington T, Tromberg BJ, Brenner M.
    Physiol Meas; 2006 Aug 07; 27(8):757-67. PubMed ID: 16772673
    [Abstract] [Full Text] [Related]

  • 10. The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics.
    Boas DA, Gaudette T, Strangman G, Cheng X, Marota JJ, Mandeville JB.
    Neuroimage; 2001 Jan 07; 13(1):76-90. PubMed ID: 11133311
    [Abstract] [Full Text] [Related]

  • 11. Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy.
    Pucci O, Toronov V, St Lawrence K.
    Appl Opt; 2010 Nov 10; 49(32):6324-32. PubMed ID: 21068864
    [Abstract] [Full Text] [Related]

  • 12. Depth profile of diffuse reflectance near-infrared spectroscopy for measurement of water content in skin.
    Arimoto H, Egawa M, Yamada Y.
    Skin Res Technol; 2005 Feb 10; 11(1):27-35. PubMed ID: 15691256
    [Abstract] [Full Text] [Related]

  • 13. [The influence of probe geometry on the sensitivity of tissue oximeter using near infra-red spectroscopy].
    Wang F, Ding H, Lin F.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2000 Aug 10; 20(4):585-8. PubMed ID: 12945385
    [Abstract] [Full Text] [Related]

  • 14. Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS.
    Saager RB, Telleri NL, Berger AJ.
    Neuroimage; 2011 Apr 15; 55(4):1679-85. PubMed ID: 21256223
    [Abstract] [Full Text] [Related]

  • 15. In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution.
    Laufer J, Elwell C, Delpy D, Beard P.
    Phys Med Biol; 2005 Sep 21; 50(18):4409-28. PubMed ID: 16148401
    [Abstract] [Full Text] [Related]

  • 16. Sources of absorption and scattering contrast for near-infrared optical mammography.
    Cerussi AE, Berger AJ, Bevilacqua F, Shah N, Jakubowski D, Butler J, Holcombe RF, Tromberg BJ.
    Acad Radiol; 2001 Mar 21; 8(3):211-8. PubMed ID: 11249084
    [Abstract] [Full Text] [Related]

  • 17. Diffuse reflectance spectrophotometry with visible light: comparison of four different methods in a tissue phantom.
    Gade J, Palmqvist D, Plomgård P, Greisen G.
    Phys Med Biol; 2006 Jan 07; 51(1):121-36. PubMed ID: 16357435
    [Abstract] [Full Text] [Related]

  • 18. Intralipid: towards a diffusive reference standard for optical tissue phantoms.
    Ninni PD, Martelli F, Zaccanti G.
    Phys Med Biol; 2011 Jan 21; 56(2):N21-8. PubMed ID: 21160111
    [Abstract] [Full Text] [Related]

  • 19. NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy.
    Ye JC, Tak S, Jang KE, Jung J, Jang J.
    Neuroimage; 2009 Jan 15; 44(2):428-47. PubMed ID: 18848897
    [Abstract] [Full Text] [Related]

  • 20. [Near-infrared optical imaging of human brain function--a novel approach to the brain and the mind].
    Hoshi Y.
    Seishin Shinkeigaku Zasshi; 2002 Jan 15; 104(5):381-93. PubMed ID: 12187655
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 31.