These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
367 related items for PubMed ID: 19258689
1. Biological implications of the hydrodynamics of swimming at or near the surface and in shallow water. Blake RW. Bioinspir Biomim; 2009 Mar; 4(1):015004. PubMed ID: 19258689 [Abstract] [Full Text] [Related]
2. Swimming in the upside down catfish Synodontis nigriventris: it matters which way is up. Blake RW, Chan KH. J Exp Biol; 2007 Sep; 210(Pt 17):2979-89. PubMed ID: 17704073 [Abstract] [Full Text] [Related]
3. Wave drag on human swimmers. Vennell R, Pease D, Wilson B. J Biomech; 2006 Sep; 39(4):664-71. PubMed ID: 16439236 [Abstract] [Full Text] [Related]
5. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming. Polidori G, Taïar R, Fohanno S, Mai TH, Lodini A. J Biomech; 2006 Sep; 39(13):2535-41. PubMed ID: 16153653 [Abstract] [Full Text] [Related]
6. Aquatic burst locomotion by hydroplaning and paddling in common eiders (Somateria mollissima). Gough WT, Farina SC, Fish FE. J Exp Biol; 2015 Jun; 218(Pt 11):1632-8. PubMed ID: 25852065 [Abstract] [Full Text] [Related]
7. Submerged swimming of the great cormorant Phalacrocorax carbo sinensis is a variant of the burst-and-glide gait. Ribak G, Weihs D, Arad Z. J Exp Biol; 2005 Oct; 208(Pt 20):3835-49. PubMed ID: 16215212 [Abstract] [Full Text] [Related]
8. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles. Blake RW, Ng H, Chan KH, Li J. Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130 [Abstract] [Full Text] [Related]
10. A kinematic and dynamic comparison of surface and underwater displacement in high level monofin swimming. Nicolas G, Bideau B. Hum Mov Sci; 2009 Aug; 28(4):480-93. PubMed ID: 19395109 [Abstract] [Full Text] [Related]
11. Boxfishes as unusually well-controlled autonomous underwater vehicles. Gordon MS, Hove JR, Webb PW, Weihs D. Physiol Biochem Zool; 2000 Aug; 73(6):663-71. PubMed ID: 11121341 [Abstract] [Full Text] [Related]
15. The effect of swimmer's hand/forearm acceleration on propulsive forces generation using computational fluid dynamics. Rouboa A, Silva A, Leal L, Rocha J, Alves F. J Biomech; 2006 Dec; 39(7):1239-48. PubMed ID: 15950980 [Abstract] [Full Text] [Related]
16. Turbulence model choice for the calculation of drag forces when using the CFD method. Zaïdi H, Fohanno S, Taïar R, Polidori G. J Biomech; 2010 Feb 10; 43(3):405-11. PubMed ID: 19889420 [Abstract] [Full Text] [Related]
17. Hydrodynamic sensing does not facilitate active drag reduction in the golden shiner (Notemigonus crysoleucas). McHenry MJ, Michel KB, Stewart W, Müller UK. J Exp Biol; 2010 Apr 10; 213(Pt 8):1309-19. PubMed ID: 20348343 [Abstract] [Full Text] [Related]
18. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model. Reid DA, Hildenbrandt H, Padding JT, Hemelrijk CK. Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb 10; 85(2 Pt 1):021901. PubMed ID: 22463238 [Abstract] [Full Text] [Related]
19. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes. Borazjani I, Sotiropoulos F. J Exp Biol; 2009 Feb 10; 212(Pt 4):576-92. PubMed ID: 19181905 [Abstract] [Full Text] [Related]
20. The role of the lateral line in active drag reduction by clupeoid fishes. Lighthill J. Symp Soc Exp Biol; 1995 Feb 10; 49():35-48. PubMed ID: 8571234 [Abstract] [Full Text] [Related] Page: [Next] [New Search]