These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Electron transport and coupled energy generation in Pseudomonas saccharophila. Ishaque M, Donawa A, Aleem MI. Can J Biochem; 1971 Nov 01; 49(11):1175-82. PubMed ID: 4332469 [No Abstract] [Full Text] [Related]
5. [Energy production in Mycobacterium lepraemurium cultured in vitro]. Ishaque M. Res Microbiol; 1991 Nov 01; 142(9):1013-8. PubMed ID: 1805303 [Abstract] [Full Text] [Related]
6. Rapid reduction of cytochrome c1 in the presence of antimycin and its implication for the mechanism of electron transfer in the cytochrome b-c1 segment of the mitochondrial respiratory chain. Bowyer JR, Trumpower BL. J Biol Chem; 1981 Mar 10; 256(5):2245-51. PubMed ID: 6257713 [Abstract] [Full Text] [Related]
7. The oxidative activities of membrane vesicles from Bacillus caldolyticus. Energy-dependence of succinate oxidation. Dawson AG, Chappell JB. Biochem J; 1978 Feb 15; 170(2):395-405. PubMed ID: 205211 [Abstract] [Full Text] [Related]
8. Energy conversion in autotrophically grown Pseudomonas saccharophila. Donawa AL, Ishaque M, Aleem HM. Eur J Biochem; 1971 Jul 29; 21(2):292-300. PubMed ID: 4327453 [No Abstract] [Full Text] [Related]
9. The energized state of rat liver mitochondria. ATP equivalence, uncoupler sensitivity, and decay kinetics. Lemasters JJ, Hackenbrock CR. J Biol Chem; 1980 Jun 25; 255(12):5674-80. PubMed ID: 7380830 [No Abstract] [Full Text] [Related]
10. Antibiotic mucidin, a new antimycin A-like inhibitor of electron transport in rat liver mitochondria. Subík J, Behún M, Musílek V. Biochem Biophys Res Commun; 1974 Mar 15; 57(1):17-22. PubMed ID: 4364001 [No Abstract] [Full Text] [Related]
12. The upper and lower limits of the mechanistic stoichiometry of mitochondrial oxidative phosphorylation. Stoichiometry of oxidative phosphorylation. Beavis AD, Lehninger AL. Eur J Biochem; 1986 Jul 15; 158(2):315-22. PubMed ID: 3015613 [Abstract] [Full Text] [Related]
13. The microbial metabolism of C1 compounds. Oxidative phosphorylation in membrane preparations of Pseudomonas AM1. Netrusov AI, Anthony C. Biochem J; 1979 Feb 15; 178(2):353-60. PubMed ID: 220960 [Abstract] [Full Text] [Related]
17. Tetrahydropterin: reduction of cytochrome c and coupled phosphorylation at mitochondrial site 3. Taylor D, Hochstein P. Biochem Biophys Res Commun; 1975 Nov 03; 67(1):156-62. PubMed ID: 1011 [No Abstract] [Full Text] [Related]
18. Mechanism of respiration-driven proton translocation in the inner mitochondrial membrane. Analysis of proton translocation associated with oxidation of endogenous ubiquinol. Papa S, Lorusso M, Guerrieri F. Biochim Biophys Acta; 1975 Jun 17; 387(3):425-40. PubMed ID: 237540 [Abstract] [Full Text] [Related]
19. Effect of inhibitors of electron transport and oxidative phosphorylation on Trypanosoma cruzi respiration and growth. Stoppani AO, Docampo R, de Boiso JF, Frasch AC. Mol Biochem Parasitol; 1980 Oct 17; 2(1):3-21. PubMed ID: 7007881 [Abstract] [Full Text] [Related]
20. Mitochondrial particles resolved for ion translocation. I. Preparation and properties of a particle coupled only at phosphorylation site 3 of the electron transfer chain. Penniston JT, Vande Zande H, Green DE. Arch Biochem Biophys; 1966 Mar 17; 113(3):507-11. PubMed ID: 4287663 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]