These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
128 related items for PubMed ID: 19259770
1. Claw development and cornification in the passeraceous bird zebrafinch (Taeniatopygia guttata castanotis). Alibardi L. Anat Sci Int; 2009 Sep; 84(3):189-99. PubMed ID: 19259770 [Abstract] [Full Text] [Related]
2. Corneous beta proteins of the epidermal differentiation complex (EDC) form large part of the corneous material of claws and rhamphothecae in turtles. Alibardi L. Protoplasma; 2020 Jul; 257(4):1123-1138. PubMed ID: 32166360 [Abstract] [Full Text] [Related]
3. Immunodetection of type I acidic keratins associated to periderm granules during the transition of cornification from embryonic to definitive chick epidermis. Alibardi L. Micron; 2014 Oct; 65():51-61. PubMed ID: 25041831 [Abstract] [Full Text] [Related]
4. Ultrastructural localization of hair keratin homologs in the claw of the lizard Anolis carolinensis. Alibardi L, Jaeger K, Dalla Valle L, Eckhart L. J Morphol; 2011 Mar; 272(3):363-70. PubMed ID: 21312232 [Abstract] [Full Text] [Related]
5. Immunolocalization of corneous beta proteins of the Epidermal Differentiation Complex in the developing claw of the alligator. Alibardi L. Ann Anat; 2020 Sep; 231():151513. PubMed ID: 32229243 [Abstract] [Full Text] [Related]
9. Ultrastructural immunolocalization of alpha-keratins and associated beta-proteins (beta-keratins) suggests a new interpretation on the process of hard and soft cornification in turtle epidermis. Alibardi L. Micron; 2013 Sep; 52-53():8-15. PubMed ID: 23958576 [Abstract] [Full Text] [Related]
10. Microscopic and immunohistochemical study on the cornification of the developing beak in the turtle Emydura macquarii. Alibardi L. J Morphol; 2016 Oct; 277(10):1309-19. PubMed ID: 27418151 [Abstract] [Full Text] [Related]
11. Cells of embryonic and regenerating germinal layers within barb ridges: implication for the development, evolution and diversification of feathers. Alibardi L. J Submicrosc Cytol Pathol; 2006 Apr; 38(1):51-76. PubMed ID: 17283967 [Abstract] [Full Text] [Related]
12. Ultrastructural and immunohistochemical observations on the process of horny growth in chelonian shells. Alibardi L. Acta Histochem; 2006 Apr; 108(2):149-62. PubMed ID: 16733064 [Abstract] [Full Text] [Related]
13. Proliferation in the epidermis of chelonians and growth of the horny scutes. Alibardi L. J Morphol; 2005 Jul; 265(1):52-69. PubMed ID: 15880409 [Abstract] [Full Text] [Related]
14. Histological microstructure of the claws of the African clawed frog, Xenopus laevis (Anura: Pipidae): implications for the evolution of claws in tetrapods. Maddin HC, Musat-Marcu S, Reisz RR. J Exp Zool B Mol Dev Evol; 2007 May 15; 308(3):259-68. PubMed ID: 17262827 [Abstract] [Full Text] [Related]
15. Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives. Alibardi L. Int Rev Cytol; 2006 May 15; 253():177-259. PubMed ID: 17098057 [Abstract] [Full Text] [Related]
16. Changes of epidermal proteins immunolocalization in the corneous layer from embryonic to definitive avian beak. Alibardi L. Micron; 2024 Nov 15; 186():103704. PubMed ID: 39178619 [Abstract] [Full Text] [Related]
18. Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales. Alibardi L, Toni M. Prog Histochem Cytochem; 2006 Nov 15; 40(2):73-134. PubMed ID: 16584938 [Abstract] [Full Text] [Related]