These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
658 related items for PubMed ID: 19260211
1. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil. Alarcón A, Davies FT, Autenrieth RL, Zuberer DA. Int J Phytoremediation; 2008; 10():251-63. PubMed ID: 19260211 [Abstract] [Full Text] [Related]
2. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Jankong P, Visoottiviseth P. Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218 [Abstract] [Full Text] [Related]
3. Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. Hernández-Ortega HA, Alarcón A, Ferrera-Cerrato R, Zavaleta-Mancera HA, López-Delgado HA, Mendoza-López MR. J Environ Manage; 2012 Mar; 95 Suppl():S319-24. PubMed ID: 21420227 [Abstract] [Full Text] [Related]
4. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Andrade SA, Gratão PL, Schiavinato MA, Silveira AP, Azevedo RA, Mazzafera P. Chemosphere; 2009 Jun; 75(10):1363-70. PubMed ID: 19268339 [Abstract] [Full Text] [Related]
5. Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms. Lu YF, Lu M, Peng F, Wan Y, Liao MH. Chemosphere; 2014 Jul; 106():44-50. PubMed ID: 24457052 [Abstract] [Full Text] [Related]
6. Arbuscular mycorrhizal fungi in chronically petroleum-contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination. Franco-Ramírez A, Ferrera-Cerrato R, Varela-Fregoso L, Pérez-Moreno J, Alarcón A. J Basic Microbiol; 2007 Oct; 47(5):378-83. PubMed ID: 17910101 [Abstract] [Full Text] [Related]
7. Controlled release fertilizer increased phytoremediation of petroleum-contaminated sandy soil. Cartmill AD, Cartmill DL, Alarcón A. Int J Phytoremediation; 2014 Oct; 16(3):285-301. PubMed ID: 24912225 [Abstract] [Full Text] [Related]
8. Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Xun F, Xie B, Liu S, Guo C. Environ Sci Pollut Res Int; 2015 Jan; 22(1):598-608. PubMed ID: 25091168 [Abstract] [Full Text] [Related]
9. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Afzal M, Yousaf S, Reichenauer TG, Sessitsch A. Int J Phytoremediation; 2012 Jan; 14(1):35-47. PubMed ID: 22567693 [Abstract] [Full Text] [Related]
10. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Vivas A, Biró B, Ruíz-Lozano JM, Barea JM, Azcón R. Chemosphere; 2006 Mar; 62(9):1523-33. PubMed ID: 16098559 [Abstract] [Full Text] [Related]
11. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. de Andrade SA, da Silveira AP, Jorge RA, de Abreu MF. Int J Phytoremediation; 2008 Mar; 10(1):1-13. PubMed ID: 18709928 [Abstract] [Full Text] [Related]
12. Arbuscular mycorrhizal phytoremediation of soils contaminated with phenanthrene and pyrene. Gao Y, Li Q, Ling W, Zhu X. J Hazard Mater; 2011 Jan 30; 185(2-3):703-9. PubMed ID: 20956057 [Abstract] [Full Text] [Related]
13. Promoted biodegradation and microbiological effects of petroleum hydrocarbons by Impatiens balsamina L. with strong endurance. Cai Z, Zhou Q, Peng S, Li K. J Hazard Mater; 2010 Nov 15; 183(1-3):731-7. PubMed ID: 20724074 [Abstract] [Full Text] [Related]
14. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Rajtor M, Piotrowska-Seget Z. Chemosphere; 2016 Nov 15; 162():105-16. PubMed ID: 27487095 [Abstract] [Full Text] [Related]
15. Phytoremediation of petroleum contaminated soils by Mirabilis Jalapa L. in a greenhouse plot experiment. Peng S, Zhou Q, Cai Z, Zhang Z. J Hazard Mater; 2009 Sep 15; 168(2-3):1490-6. PubMed ID: 19346069 [Abstract] [Full Text] [Related]
16. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Alarcón A, Davies FT, Egilla JN, Fox TC, Estrada-Luna AA, Ferrera-Cerrato R. Rev Latinoam Microbiol; 2002 Sep 15; 44(1):31-7. PubMed ID: 17061513 [Abstract] [Full Text] [Related]
17. Interaction of higher plant (jute), electrofused bacteria and mycorrhiza on anthracene biodegradation. Cheung KC, Zhang JY, Deng HH, Ou YK, Leung HM, Wu SC, Wong MH. Bioresour Technol; 2008 May 15; 99(7):2148-55. PubMed ID: 17662599 [Abstract] [Full Text] [Related]
18. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. Yu XZ, Wu SC, Wu FY, Wong MH. J Hazard Mater; 2011 Feb 28; 186(2-3):1206-17. PubMed ID: 21176862 [Abstract] [Full Text] [Related]
19. The effect of arbuscular mycorrhizal fungi and phosphate amendement on arsenic uptake, accumulation and growth of Pteris vittata in As-contaminated soil. Leung HM, Wu FY, Cheung KC, Ye ZH, Wong MH. Int J Phytoremediation; 2010 Feb 28; 12(4):384-403. PubMed ID: 20734915 [Abstract] [Full Text] [Related]
20. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Carrasco L, Azcón R, Kohler J, Roldán A, Caravaca F. Sci Total Environ; 2011 Feb 15; 409(6):1205-9. PubMed ID: 21211827 [Abstract] [Full Text] [Related] Page: [Next] [New Search]