These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
355 related items for PubMed ID: 19261076
1. Growth and contaminant removal effect of several plants in constructed wetlands. Cheng XY, Liang MQ, Chen WY, Liu XC, Chen ZH. J Integr Plant Biol; 2009 Mar; 51(3):325-35. PubMed ID: 19261076 [Abstract] [Full Text] [Related]
3. Interactive effects of nitrogen and phosphorus loadings on nutrient removal from simulated wastewater using Schoenoplectus validus in wetland microcosms. Zhang Z, Rengel Z, Meney K. Chemosphere; 2008 Aug; 72(11):1823-8. PubMed ID: 18561977 [Abstract] [Full Text] [Related]
4. Root features related to plant growth and nutrient removal of 35 wetland plants. Lai WL, Wang SQ, Peng CL, Chen ZH. Water Res; 2011 Jul; 45(13):3941-50. PubMed ID: 21640369 [Abstract] [Full Text] [Related]
5. Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands. Caselles-Osorio A, García J. Sci Total Environ; 2007 Jun 01; 378(3):253-62. PubMed ID: 17433416 [Abstract] [Full Text] [Related]
7. Nutrient removal and plant biomass in a subsurface flow constructed wetland in Brisbane, Australia. Browning K, Greenway M. Water Sci Technol; 2003 Jun 01; 48(5):183-9. PubMed ID: 14621163 [Abstract] [Full Text] [Related]
8. Influence of plant tillering and root volume on flow pattern and water purification of vertical down flow wetlands for domestic wastewater treatment. Wang S, Xu Z, Li H. Water Sci Technol; 2009 Jun 01; 59(1):81-7. PubMed ID: 19151489 [Abstract] [Full Text] [Related]
9. Potential of constructed wetlands in treating the eutrophic water: evidence from Taihu Lake of China. Li L, Li Y, Biswas DK, Nian Y, Jiang G. Bioresour Technol; 2008 Apr 01; 99(6):1656-63. PubMed ID: 17532209 [Abstract] [Full Text] [Related]
12. Suitability of macrophytes for nutrient removal from surface flow constructed wetlands receiving secondary treated sewage effluent in Queensland, Australia. Greenway M. Water Sci Technol; 2003 Apr 01; 48(2):121-8. PubMed ID: 14510202 [Abstract] [Full Text] [Related]
13. Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm. Kurzbaum E, Kirzhner F, Sela S, Zimmels Y, Armon R. Water Res; 2010 Sep 01; 44(17):5021-31. PubMed ID: 20705318 [Abstract] [Full Text] [Related]
15. Plant senescence: a mechanism for nutrient release in temperate agricultural wetlands. Kröger R, Holland MM, Moore MT, Cooper CM. Environ Pollut; 2007 Mar 01; 146(1):114-9. PubMed ID: 16905226 [Abstract] [Full Text] [Related]
16. The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. Nielsen KL, Eshel A, Lynch JP. J Exp Bot; 2001 Feb 01; 52(355):329-39. PubMed ID: 11283178 [Abstract] [Full Text] [Related]
17. Nitrous oxide emission from polyculture constructed wetlands: effect of plant species. Wang Y, Inamori R, Kong H, Xu K, Inamori Y, Kondo T, Zhang J. Environ Pollut; 2008 Mar 01; 152(2):351-60. PubMed ID: 17655987 [Abstract] [Full Text] [Related]
18. Performance comparison of constructed wetlands with gravel- and rice husk-based media for phenol and nitrogen removal. Tee HC, Seng CE, Noor AM, Lim PE. Sci Total Environ; 2009 May 15; 407(11):3563-71. PubMed ID: 19272632 [Abstract] [Full Text] [Related]
19. Contaminant removal from low-concentration polluted river water by the bio-rack wetlands. Wang J, Zhang L, Lu S, Jin X, Gan S. J Environ Sci (China); 2012 May 15; 24(6):1006-13. PubMed ID: 23505867 [Abstract] [Full Text] [Related]
20. Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Brisson J, Chazarenc F. Sci Total Environ; 2009 Jun 15; 407(13):3923-30. PubMed ID: 18625516 [Abstract] [Full Text] [Related] Page: [Next] [New Search]