These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 19263076

  • 21. Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways.
    Mikkelsen MD, Petersen BL, Glawischnig E, Jensen AB, Andreasson E, Halkier BA.
    Plant Physiol; 2003 Jan; 131(1):298-308. PubMed ID: 12529537
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Current aspects of auxin biosynthesis in plants.
    Kasahara H.
    Biosci Biotechnol Biochem; 2016 Jan; 80(1):34-42. PubMed ID: 26364770
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Linking phytochrome to plant immunity: low red : far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin.
    Cargnel MD, Demkura PV, Ballaré CL.
    New Phytol; 2014 Oct; 204(2):342-54. PubMed ID: 25236170
    [Abstract] [Full Text] [Related]

  • 26. Arabidopsis acetyl-amido synthetase GH3.5 involvement in camalexin biosynthesis through conjugation of indole-3-carboxylic acid and cysteine and upregulation of camalexin biosynthesis genes.
    Wang MY, Liu XT, Chen Y, Xu XJ, Yu B, Zhang SQ, Li Q, He ZH.
    J Integr Plant Biol; 2012 Jul; 54(7):471-85. PubMed ID: 22624950
    [Abstract] [Full Text] [Related]

  • 27. Arabidopsis gulliver1/SUPERROOT2-7 identifies a metabolic basis for auxin and brassinosteroid synergy.
    Maharjan PM, Dilkes BP, Fujioka S, Pěnčík A, Ljung K, Burow M, Halkier BA, Choe S.
    Plant J; 2014 Dec; 80(5):797-808. PubMed ID: 25256367
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis.
    Bak S, Feyereisen R.
    Plant Physiol; 2001 Sep; 127(1):108-18. PubMed ID: 11553739
    [Abstract] [Full Text] [Related]

  • 30. The role of cytochrome P450 enzymes in the biosynthesis of camalexin.
    Glawischnig E.
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1206-8. PubMed ID: 17073786
    [Abstract] [Full Text] [Related]

  • 31. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis.
    Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA.
    Plant Physiol; 2003 Sep; 133(1):63-72. PubMed ID: 12970475
    [Abstract] [Full Text] [Related]

  • 32. Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana.
    Su T, Xu J, Li Y, Lei L, Zhao L, Yang H, Feng J, Liu G, Ren D.
    Plant Cell; 2011 Jan; 23(1):364-80. PubMed ID: 21239642
    [Abstract] [Full Text] [Related]

  • 33. The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis.
    Celenza JL, Quiel JA, Smolen GA, Merrikh H, Silvestro AR, Normanly J, Bender J.
    Plant Physiol; 2005 Jan; 137(1):253-62. PubMed ID: 15579661
    [Abstract] [Full Text] [Related]

  • 34. Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum.
    Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y.
    Plant J; 2011 Jul; 67(1):81-93. PubMed ID: 21418358
    [Abstract] [Full Text] [Related]

  • 35. Co-regulation of indole glucosinolates and camalexin biosynthesis by CPK5/CPK6 and MPK3/MPK6 signaling pathways.
    Yang L, Zhang Y, Guan R, Li S, Xu X, Zhang S, Xu J.
    J Integr Plant Biol; 2020 Nov; 62(11):1780-1796. PubMed ID: 32449805
    [Abstract] [Full Text] [Related]

  • 36. The maize cytochrome P450 CYP79A61 produces phenylacetaldoxime and indole-3-acetaldoxime in heterologous systems and might contribute to plant defense and auxin formation.
    Irmisch S, Zeltner P, Handrick V, Gershenzon J, Köllner TG.
    BMC Plant Biol; 2015 May 29; 15():128. PubMed ID: 26017568
    [Abstract] [Full Text] [Related]

  • 37. Water stress and aphid feeding differentially influence metabolite composition in Arabidopsis thaliana (L.).
    Mewis I, Khan MA, Glawischnig E, Schreiner M, Ulrichs C.
    PLoS One; 2012 May 29; 7(11):e48661. PubMed ID: 23144921
    [Abstract] [Full Text] [Related]

  • 38. Altered methionine metabolism impacts phenylpropanoid production and plant development in Arabidopsis thaliana.
    Shin D, Perez VC, Dickinson GK, Zhao H, Dai R, Tomiczek B, Cho KH, Zhu N, Koh J, Grenning A, Kim J.
    Plant J; 2023 Oct 29; 116(1):187-200. PubMed ID: 37366635
    [Abstract] [Full Text] [Related]

  • 39. Activation of camalexin biosynthesis in Arabidopsis thaliana in response to perception of bacterial lipopolysaccharides: a gene-to-metabolite study.
    Beets CA, Huang JC, Madala NE, Dubery I.
    Planta; 2012 Jul 29; 236(1):261-72. PubMed ID: 22350766
    [Abstract] [Full Text] [Related]

  • 40. CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis.
    Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R.
    Plant Cell; 2001 Jan 29; 13(1):101-11. PubMed ID: 11158532
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.