These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
578 related items for PubMed ID: 19267492
1. Prediction of SAMPL-1 hydration free energies using a continuum electrostatics-dispersion model. Sulea T, Wanapun D, Dennis S, Purisima EO. J Phys Chem B; 2009 Apr 09; 113(14):4511-20. PubMed ID: 19267492 [Abstract] [Full Text] [Related]
2. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. Marenich AV, Cramer CJ, Truhlar DG. J Phys Chem B; 2009 May 07; 113(18):6378-96. PubMed ID: 19366259 [Abstract] [Full Text] [Related]
3. The SGB/NP hydration free energy model based on the surface generalized born solvent reaction field and novel nonpolar hydration free energy estimators. Gallicchio E, Zhang LY, Levy RM. J Comput Chem; 2002 Apr 15; 23(5):517-29. PubMed ID: 11948578 [Abstract] [Full Text] [Related]
4. On the nonpolar hydration free energy of proteins: surface area and continuum solvent models for the solute-solvent interaction energy. Levy RM, Zhang LY, Gallicchio E, Felts AK. J Am Chem Soc; 2003 Aug 06; 125(31):9523-30. PubMed ID: 12889983 [Abstract] [Full Text] [Related]
5. Computation of hydration free energies of organic solutes with an implicit water model. Basilevsky MV, Leontyev IV, Luschekina SV, Kondakova OA, Sulimov VB. J Comput Chem; 2006 Apr 15; 27(5):552-70. PubMed ID: 16463371 [Abstract] [Full Text] [Related]
6. MST continuum study of the hydration free energies of monovalent ionic species. Curutchet C, Bidon-Chanal A, Soteras I, Orozco M, Luque FJ. J Phys Chem B; 2005 Mar 03; 109(8):3565-74. PubMed ID: 16851394 [Abstract] [Full Text] [Related]
7. Restoring charge asymmetry in continuum electrostatics calculations of hydration free energies. Purisima EO, Sulea T. J Phys Chem B; 2009 Jun 18; 113(24):8206-9. PubMed ID: 19459599 [Abstract] [Full Text] [Related]
8. Performance of the IEF-MST solvation continuum model in a blind test prediction of hydration free energies. Soteras I, Forti F, Orozco M, Luque FJ. J Phys Chem B; 2009 Jul 09; 113(27):9330-4. PubMed ID: 19534454 [Abstract] [Full Text] [Related]
9. On the transferability of hydration-parametrized continuum electrostatics models to solvated binding calculations. Rankin KN, Sulea T, Purisima EO. J Comput Chem; 2003 Jun 09; 24(8):954-62. PubMed ID: 12720316 [Abstract] [Full Text] [Related]
12. Applicability of a continuum solvation model to the octanol water transfer: CFF91 based model for amino acids. Schmidt AB, Fine RM. Biopolymers; 1995 Nov 09; 36(5):599-605. PubMed ID: 7578951 [Abstract] [Full Text] [Related]
17. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation. Goncalves PF, Stassen H. J Chem Phys; 2005 Dec 01; 123(21):214109. PubMed ID: 16356041 [Abstract] [Full Text] [Related]